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Abstract

Expectations can inform fast, accurate decisions. But what informs expectations?
Here we test the hypothesis that expectations are set by dynamic inference from mem-
ory. Participants performed a cue-guided perceptual decision task with independently-
varying memory and sensory evidence. Cues established expectations by reminding
participants of past stimulus-stimulus pairings, which predicted the likely target in a
subsequent noisy image stream. Participant’s responses used both memory and sensory
information, weighted by their relative reliability. Formal model comparison showed
that the sensory evidence accumulation was best explained when its parameters were
set dynamically at each trial by evidence accumulated from memory. Supporting this
model, neural pattern analysis revealed that responses to the probe were modulated
by the specific content and fidelity of memory reinstatement that occurred before the
probe appeared. Together, these results suggest that perceptual decisions arise from
the continuous and integrated accumulation of memory and sensory evidence.

Laboratory studies of decision-making tend to focus on choices made on the basis of a
single kind of information – such as anticipated utility [1], sensory input [2], or mnemonic
evidence [3, 4] – taken alone. But in the real world, our decisions depend on integrating
information available from many sources – both external, such as visual, and internal, such
as our memories.

For instance, when traveling on an unfamiliar train route, I might miss my intended stop.
How do I figure out where to make the transfer to get back on my desired route? I could
rely solely on sight – as the train stops at each station, quickly scan the platform for helpful
signs or markings. I could rely solely on my memories – which station is next? Will it have
the transfer I need? Both kinds of information can be unreliable: station platforms may
look very similar, with distant or unhelpful signage, or my memories could be sparse and
unclear. More likely, I will combine both kinds of information: query my memories about
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which stations might have transfers, and combine those with what I can see from a quick
look out the door at each stop. By combining what I remember with what I see, I can
improve my ability to figure out where I am – and, thus, what actions I should take.

A similar and open question in the laboratory study of perceptual decisions is how ex-
pectations should, and do, influence the inference process. Within the canonical evidence-
accumulation framework [2, 3], expectations can be encoded as a change to either the starting
point of accumulation, or the rate at which evidence is accumulated [5–10]. Another, related
idea is that expectations can dynamically impact both the rate and direction of accumu-
lation, with increasing influence as a decision takes longer to resolve [11]. However, all of
these approaches assume that the content of expectations is fixed before the decision starts,
whether by learning or by instruction. In the train analogy, the map is known with certainty,
though the reliability of the visual cues vary from station to station (trial to trial).

Recently, we and others have shown that decisions can be made on the basis of sampled
memories, similar to the way in which samples of visual input are used to guide perceptual
decisions [3, 12–15]. Building on these results, we test the hypothesis that both types of
sampling occur as a single, continuous, inference process, with actions selected on the basis
of the combined evidence.

Our hypothesis yields two main predictions. First, evidence accumulation should begin
before the onset of sensory information, with dynamics that change when the probe is pre-
sented. Specifically, before the probe, accumulation should reflect the contents of memory
retrievals and their reliability; after, the rate of accumulation should be influenced by the
coherence and content of visual information. Second, the hypothesis predicts that the accu-
mulation process is integrative across modalities. Specifically, decisions made after the onset
of the probe should reflect the content and consistency of memory samples collected before
the onset of the probe – that is, to the degree that the memory samples concord with the
visual samples, then the decision should be faster.

To test these predictions, we developed a memory-guided perceptual inference task. In
the task, two distinct kinds of information – memory and sensory – indicated the correct
response for that trial, and were made available at separate times. First, participants learned,
by experience, a small set of cue-photograph pairs. Fractal cues were followed in quick
succession by one of two face or house photographs, one more often than the other. Then,
in the main phase of the task, these cues were used to establish expectations for a sensory
decision. Specifically, a fractal cue triggered memories of the (face or house) photographs
that had been previously observed to follow in time. These memories served as evidence
about the likely identity and reliability of a subsequent noisy visual probe stimulus – a rapidly
alternating stream of photographs, one of which was the one predicted by the cue. Critically,
participants could choose to respond at any time, including before the probe appeared.
Therefore, their responses could reflect the influence of memory or sensory information alone,
or some combination of the two.

We formalized our predictions using a new sequential sampling model that allows for
dynamic changes in the rate – and, by implication, the content – of evidence accumulation
[16]. In our task, the first stage of the model samples evidence from memories triggered by the



fractal cue. The second stage carries forward the evidence accumulated from stage one, while
incorporating new samples of evidence, this time visual input from the noisy probe. This
approach differs from previous models of expectation-guided perceptual inference in that it
constructs expectations dynamically for each trial, using the cue to effectively anticipate the
content of the probe. As a result, what the model “expects” will vary between decisions,
depending on what evidence was sampled during the first stage – and how long is taken to
do so.

Experiment 1 is a behavioral study that tests the first prediction of the model: that
choices and response times in the task reflect a continuous inference process in which the
rate of accumulation changes with the onset of visual information. We fit our hypothesized
model to these data, and contrast its fit with that of more standard models. Experiment 2
is an fMRI study that tests the second prediction: that evidence accumulated from memory
is itself a dynamical process, that evolves over the period prior to presentation of the cue,
and the result of which is carried forward and affects the sensory inference process. We used
Multivariate Pattern Analysis (MVPA) to measure, on a trial-by-trial basis, neural signatures
of the degree and content of memory samples, and test their relationship to responses made
after the onset of the flickering probe.

Taken together, the results of these experiments provide a new account of perceptual
decisions, by demonstrating a critical role for integrated, dynamic inference from mnemonic,
as well as sensory, information.

Results

Participants performed a cue-guided perceptual inference task (Figure 1), in which fractal
cues could be used to anticipate the content and coherence of a noisy probe stimulus that
appeared after a short, variable-length delay (Figure 1b) The task encouraged participants
to rely on evidence from memories, triggered by fractal cues, that could be consulted during
the anticipation delay, and, after the delay, from a noisy visual probe: a stream of rapidly
alternating photographs “flickering” at one of two levels of coherence (Figure 1c). The
participant’s task was to press the key corresponding to the photograph that was most
often present in the flickering probe. This photograph was referred to as the “target.”
Critically, because the task was blocked such that each stimulus category corresponded to
one coherence level in each block (Figure 1b), the fractal cue provided participants with two
pieces of information about the probe: 1. the likelihood of each photograph being the target;
and 2. the coherence of the flickering stream.

Experiment 1

We first tested whether choices and response times reflected the influence of both memory
evidence – operationalized via cue probability – and sensory evidence — operationalized via
the coherence of the flickering probe. According to our hypothesized two-stage inference
mechanism (Figure 2a), participants would respond more quickly and accurately when: 1.
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Figure 1: Cue-guided perceptual inference task. (a) In the Sequence learning phase, participants saw
a series of 100 cue-target pairings. Each fractal cue was shown 25 times, randomly interleaved, and at
each presentation followed by a target picture of either a face or a scene. They were told only to press the
key associated with the target photograph, once it appeared. Cues were followed by photographs from one
category only, and to each of the two pictures within that category according to complementary proportions
(50%/50%, 60%/40%, 70%/30%, 80%/20%). This set of experiences of cue-target pairings provided sequence
memories that served as evidence samples for the task in Test phase. (b) In the Test phase, participants
were again shown a fractal cue, but in this case the cue was followed by a “flickering” series of rapidly
alternating pictures. Each frame of the series contained one of the two pictures from the cued category, or
a phase-scrambled superposition of the two pictures. One picture, the target, was shown in the stream more
often than the other. Participants were asked to respond by pressing the key associated with the target
picture – critically, they could respond at any time after the onset of the fractal cue. In each block, each
category was associated with a particular level of cue predictiveness, and flickering stimuli were either of high
or low coherence – therefore, the fractal cue signaled the reliability of both memory and sensory evidence
on that trial. (c) The flickering probe stimulus was calibrated to one of two levels of difficulty. In an earlier
phase of the task, a staircasing procedure was used to determine the proportion of frames that would elicit
either higher (85%) or lower (65%) accuracy on a neutral-prior version of the flickering. In this way, the
flickering stream parametrically varied the weight of visual evidence favoring the target.



the cued memories more reliably predicted the identity of the upcoming photograph; 2. the
observed visual evidence was more coherent; and 3. the cue predictions matched the visual
evidence.

Response times and accuracy

Responses reflect the influence of memory and sensory evidence. Consistent with
a two-stage integration process, response times were distinctly bimodal, with separate peaks
following the onsets of the fractal cue and the flickering stream (Figure 2b; RT distributions
multi-modal within each ISI condition by Hartigan’s Dip Test [17]: all HDS≥ 0.028, all
P < .001).

Overall, participants responded accurately, matching the target photograph on 75.20%
(SEM 0.085%) of trials (including only trials for which there was a “correct” response possi-
ble before stimulus onset – i.e. for cue levels 60%, 70%, 80%). This proportion was reliably
greater than chance for all blocks individually (all P ≤ 0.047 by binomial test of the propor-
tion of correct responses within each block against the 50% chance level). Accuracy increased
with both cue predictiveness (R = .195, P = .009 by bootstrap across participants; Figure
3a) and target coherence (t(27) = −4.430, P < .001 by two-tailed, paired two-sample t-
test tested for the 28 participants who performed at least one block in which there was a
predictive cue for both coherence conditions). Thus, as expected, both factors appeared to
influence the decision making process.

Participants appeared to use the fractal cue to decide whether or not to respond “early”
(before the onset of the probe stimulus; Figure 3b). If the decision to respond early was driven
by accumulating evidence from cued associative memory reinstatements, then it should be
modulated by: 1. the quality of memory evidence relative to sensory evidence; and 2. the
time available to accumulate evidence. In other words, participants should have relied more
on the cues when the associated memories were more consistent, when the cues signaled that
the upcoming sensory evidence would be of low coherence, and when the anticipation delay
was longer.

Consistent with this model, the proportion of early responses increased with the pre-
dictiveness of the fractal cue (R = .222, P < .001; Figure 3b), and this relationship was
driven by trials on which the cue signaled that the perceptual stimulus would be of low
coherence (for low coherence trials, the correlation between cue predictiveness and early
responses was R = .366, P < .001; for high-coherence trials it was R = .087, P = .161;
difference: d = 3.907). Further, these responses were faster when memory evidence was
stronger. Within the group of early responses, RTs showed a trend towards being faster as
the fractal cue – target relationship was more predictive (R = −.035, P = .086 by bootstrap
across participants). Formal analysis of optimal responding in two-choice reaction time tasks
has shown that, normatively, uninformative cues should discourage deliberation, and lead to
faster responding [18]. Consistent with this prediction, the speeding effect was significant
when including only informative cues (60% and higher; R = −.050, P = .008). Finally,
the longer participants had to accumulate memory evidence, the more they responded early
– early responses increased with ISI – but only when participants were signaled that the



upcoming sensory evidence would be of low quality (low coherence: R = .110, P = .047;
high coherence: R = −.003, P = .511; difference: d = 1.134).

Separately, the model predicts that responses made after the onset of the flickering probe
stimulus should also reflect the quality of both kinds of evidence and, critically, now that both
pieces of evidence are explicitly available, that these effects should interact with whether or
not the content of memory and the probe are in agreement. Consistent with this model, for
responses after the onset of the flickering stream, RTs were faster when the cue was more
predictive (R = −.017, P = .044), and when the flickering stream was higher coherence
(mean RTs – probe-locked, log-transformed, Z-scored within participant: low coherence:
0.158 SEM 0.061 high coherence: −0.128 SEM 0.039 mean difference between low and high
coherence RTs within-participant 0.286, SEM 0.091, t(29) = 3.145, P = .004). These factors
indeed interacted: participants were more speeded by cue predictiveness when coherence
was lower (low coherence: R = −.147, P < .001; high coherence: R = −.065, P = .033;
difference: d = 1.675), and only when the target photograph matched the cue’s prediction
(valid cue: R = −.063, P < .001; invalid cue: R = .042, P = .141; difference: d = 1.739;
Figure 3c).

Taken together, these results confirm that participants’ responses reflected the integration
of information from both mnemonic cues and sensory input.

Model comparison

We hypothesized that integration of mnemonic and sensory information resulted from dy-
namic, online inference on the basis of the quality of each source of evidence. We used formal
model comparison to test this hypothesis.

Our primary model of interest implemented a continuous, two-stage evidence-accumulation
process (hereafter: MSDDM; [16]; Figure 2b), – the first stage driven by the cue, and preced-
ing the flickering probe, and the second stage beginning at the onset of the flickering stream
– with different accumulation rates in each stage.

The MSDDM is distinguished from other models by two key features: first, that the drift
rate changes at the time of flickering stream onset, and second, that accumulation in the
second stage proceeds from the evidence accumulated during the first stage. Therefore, we
compared the model against variants that selectively disabled each of those features. The
first comparison model was a single DDM, which had continuous accumulation until the time
of response, but no change in drift rate across the entire trial – i.e. responses reflected all
available evidence up to that point, weighted equally regardless of modality. We refer to
this model as 1DDM. The second comparison model was two unconnected DDMs, mirroring
the change in drift rate found in MSDDM, but with the second-stage starting point set
independently of the behavior of the first model – i.e. evidence accumulated in the first
stage only affected responses made before the onset of the flickering probe. We refer to this
model as 2DDM. Each model was fit separately to responses aggregated, across participants,
by condition – cue, coherence, and ISI.

Against both comparison models, the MSDDM was a superior explanation of choices and
response times. Against the second-best model – the 2DDM model – MSDDM was superior
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Figure 2: (a) Two-stage continuous-accumulation model. The Multi-Stage Drift-Diffusion Model
(MSDDM) describes an evidence-accumulation process with time-varying drift rate [16]. The first drift rate
corresponds to the period following onset of the fractal cue and preceding the onset of the flickering stream,
while the second corresponds to the period after the onset of the stream. Critically, at each trial, the starting
point of the second stage depends on the trajectory of the evidence accumulation that occurs in the first,
on that trial. (b) Participants responded to both the fractal cue and the flickering probe. Shown
is a histogram of (probe-locked) response times on test-phase trials during the four-second delay condition.
RT counts are aggregated across trials and participants, and binned in increments of 100ms. Separate peaks
follow the onset of the fractal cue and the onset of the flickering stream, reflecting the fact that participants
made responses on the basis of both types of information.
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by BIC (BIC(MSDDM)= 1745.262, BIC(2DDM)= 10160.319, mean difference, across condi-
tions: 187.00). This was the case across all conditions, and for every condition individually
(Figure 4a; S1; Parameter fits for each model can be found in Supplemental Tables S1 &
S2).

Experiment 2

Experiment 1 showed that behavior in the task reflects a dynamic integration of memory
and sensory evidence, yielding patterns of choices and response times that are best captured
by the MSDDM. However, because they measure only the final response, behavioral data
cannot in principle reveal a relationship between the actual memory evidence accumulated
on each trial and responses made to the ensuing flickering probe. In Experiment 2, we used
multivariate pattern analyses (MVPA) of fMRI data to measure memory evidence accumu-
lated following the fractal cue on each trial, and used this measure to predict responses
after the onset of the flickering probe on that same trial. For this experiment, 31 additional
participants completed the task from Experiment 1, while being scanned.

Behavior

Response times and accuracy.
Response behavior replicated the patterns observed in Experiment 1. Accuracy was again

high overall: 70.24% correct responses (SEM 1.18%); and reliably above-chance for 49/52
blocks individually (all p ≤ .073).

Accuracy again increased with cue predictiveness (R = .247, P = .005) and coherence
(t(26) = −4.301, P < .001). RTs were again bimodal (all HDS≥ 0.102, all P < .001). Higher
cue predictiveness resulted in a greater tendency to respond early (R = .149, P = .012),
though, in contrast to experiment 1, the effect was specific to high-coherence trials (low
coherence: R = −.102, P = .111; high coherence: R = .419, P < .001; difference: d =
4.213), perhaps reflecting that, for this group of participants, the rate of early responding
was already at or near ceiling when participants anticipated low coherence stimuli. These
early responses were faster when cue predictiveness was higher (R = −.077, P < .001);
this was equally true at either coherence level (low coherence: R = −.231, P < .001; high
coherence: R = −.229, P < .001; difference: d = 0.161).

Responses after onset of the flickering probe were again speeded by coherence (low:
0.227 SEM 0.042; high: −0.098 SEM 0.078; mean difference 0.325 SEM 0.098; t(30) = 3.326,
P = .002), and by cue predictiveness, in both coherence conditions (low: R = −.092,
P = .021; high: R = −.060, P = .013), moreso when coherence was lower (difference:
d = 0.760), and when the target photograph matched the cue’s prediction: (invalid cue:
R = .025, P = .303; valid cue: R = −.017, P = .191; difference: d = 0.945).

Finally, model comparison again favored the MSDDM over the alternative model (BIC(MSDDM)=
1230.385, BIC(2DDM)= 2861.661, mean difference, across conditions: 67.97; Figure 4b; S1;
fitted parameters in Supplemental Tables S3,S4).



a.

50/50

low high

Condition

low high low high low high

60/40 70/30 80/20

b.

50/50

low high

Condition

low high low high low high

60/40 70/30 80/20

D
if
fe

re
n

c
e

 i
n

 B
IC M

S
D

D
M

2
D

D
M

D
if
fe

re
n

c
e

 i
n

 B
IC M
S

D
D

M
2
D

D
M

2500

2000

1500

1000

500

300

250

200

150

100

50
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across conditions: 187.00. (b) Experiment 2. BIC(MSDDM)= 1230.385, BIC(2DDM)= 2861.661. Mean
difference, across conditions: 67.97.



cue image

Figure 5: Reinstatement pattern analysis. (a) We defined, for each participant, the Fusiform Face Area
(FFA) and Parahippocampal Place Area (PPA), using a localizer task that followed the main experiment.
The resulting mask defined the region across which we calculated picture-specific templates. (b) For each
trial on which participants responded after the onset of the flickering stream, we computed the average
pattern of activity in the corresponding ROI (face, scene) over the period following the onset of the fractal
cue, but preceding the onset of that flickering stream. We then calculated a reinstatement index as the
correlation between this trial-specific pattern and the template pattern for the picture predicted by the
fractal cue.

Neuroimaging

We used neural pattern similarity to measure the trial-by-trial influence of accumulated
memory evidence on responses. For each participant, we localized regions in the ventral
visual stream that were more active for face versus scene processing (FFA; [19]) and for
scene versus face processing (PPA; [20]) (Figure 5a). We next computed activity patterns
corresponding to each photograph, in the appropriate category-preferring region (faces in
FFA, scenes in PPA). We refer to these picture-specific patterns as the target patterns. The
target patterns were defined on the basis of data from an earlier response-training phase
of the task, in which participants learned which keys were mapped to each picture (see
Methods). Critically, because this response-training phase preceded the introduction of the
fractal cues, these neural activity patterns were decoupled from the fractal cues that were
later learned to predict the corresponding photographs.

We then computed, for each trial from the Test phase, a trial pattern – the average
pattern in these regions over the period following the onset of the fractal cue, up to either the
participant’s response, or one TR before the onset of the flickering stream, whichever came
first. Hereafter, we define the trial-by-trial reinstatement index as the correlation between
these trial patterns and the target pattern corresponding to the photograph predicted by
the fractal cue. (Note that on 50/50 trials this value is not defined, and so these trials were
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evidence was weak, memory sampling continued throughout the anticipation period. On late
response trials, reinstatement index increased with the length of the anticipation period – which allowed
more time available to estimate the upcoming stimulus – but only on trials on which the upcoming sensory
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d = 1.586), but less so when sensory evidence was strong (high coherence: valid: R = −.037, P = .206,
invalid: R = −.089, P = .117, difference: d = 0.423). (Error bars are ± 1 SEM, across participants.)



excluded from neuroimaging analysis.)

Pre-stimulus reinstatement scales with task conditions.
As in a previous study of memory sampling [12], we expected that, when memory evidence

was more difficult to resolve – when the cue was followed by each photograph more equally
– accumulation should proceed longer, and thus more memory samples should be drawn,
leading to a higher reinstatement index. Conversely, when sampling from memory reached
threshold – and a response was initiated – there should be fewer reinstatements, and thus
a lower reinstatement index. Similarly, memory sampling should continue across the entire
anticipation period as long as participants do not respond before the flickering probe, leading
to a higher reinstatement index with a longer anticipation period. Further, matching the
patterns in early response times, memory sampling should be more relied upon when it would
be more useful to the decision – in other words, reinstatement index should be higher when
the upcoming sensory evidence would be of lower coherence,

The reinstatement index measure exhibited all of these probabilities, consistent with the
hypothesis that it measures memory sampling. On early response trials, reinstatement index
was lower when the memory-based decision was easier (correlation between cue probability
and reinstatement index R = −.072, P = .004; Figure 6a). On late response trials, rein-
statement index was uniformly higher than on early response trials, and was equally high at
every cue probability level (R = .020, P = .225; Figure 6a). Finally, reinstatement index was
higher on trials with a longer ISI preceding low-coherence, but not high-coherence, stimuli
(low coherence: R = .183, P = .016; high coherence: R = −.083, P = .247; difference:
d = 1.546; Figure 6b).

Pre-stimulus reinstatement predicts 2nd stage response times. The observation that
reinstatement index was related to cue probability is consistent with evidence-accumulation
models, but does not itself differentiate between MSDDM versus 1DDM or 2DDM. The
key test of the MSDDM is whether responses to the flickering probe were influenced by
evidence-accumulation in anticipation of sensory input, on a trial-by-trial basis. To test this,
we examined whether reinstatement index predicted response times after the onset of the
flickering probe on each trial.

Supporting our hypothesis, reinstatement index was a reliable predictor of faster response
times to the probe (R = −.07, P = .001), a relationship that held after controlling for other
factors each of which also modulated response times (cue predictiveness, coherence, ISI;
R = −.0337, P = .039). If accumulated memory evidence sets the starting point for sensory
evidence accumulation, then reinstatement index should only predict faster responses when
memory and sensory evidence are in agreement – when the cue is “valid.” In agreement with
this hypothesis, RTs were uniquely speeded on valid- – but not invalid- – cue trials (valid
cue: R = −.053, P = .029; invalid cue: R = .010, P = .404; difference: d = 1.204; Figure
7a). Finally, if memory and sensory evidence were integrated, memory evidence should show
correspondingly less influence when sensory evidence was stronger; this should be reflected
as a greater speeding of matching, relative to non-matching, trials. Consistent with this
prediction, the benefit to memory evidence was pronounced in the low-coherence condition,
and no such benefit was observed in the high-coherence condition (low coherence, invalid cue:



R = .130, P = .087; low coherence, valid cue: R = −.063, P = .032; difference: d = 1.586;
high coherence, invalid: R = −.089, P = .117; high coherence, valid: R = −.037, P = .206;
difference: d = 0.423; Figure 7b).

Together, these results support a role for the dynamic accumulation of memory evidence
in perceptual decisions, via a continuous perceptual inference process linking memory, sen-
sation, and action.

Discussion

Humans [6, 21], animals [11], and even intelligent machines [22] rely on expectations, derived
from experience, to make quick and accurate decisions [18]. While important empirical and
theoretical work has described ways in which expectations influence dynamic, deliberative
decisions [6, 7], these investigations have generated seemingly-conflicting results [5, 7, 23, 24],
and have mainly set aside the dynamics of expectation-setting itself. These studies generally
assume that subjective expectations are more or less static across repeated trials of the same
type [5, 11, 23, 25], and are instantaneously available to the subject at choice onset. These
assumptions are justified when expectations can be based on extensive repeated experience in
stationary environments, or explicit instructions. However, even despite designs that muted
the potential for expectations to vary between instances of a decision, such variation is still
commonly observed. A standard approach is to model this variance as random Gaussian
fluctuations of the parameter values [26, 27]. It is an open question what mechanism gives
rise to this variation.

We reasoned that, if trial variability in expectations was a signature of a dynamic process,
this variability would be most pronounced – and thus most subject to interrogation – when
expectations were based on relatively few experiences, and when there was sufficient time
available for these experiences to be sampled before the decision. Our study sought to char-
acterize and explain trial variability in expectations by examining a space left unaddressed
by previous work: that in which the dynamics of expectation setting could be separately
manipulated, and measured, on a trial-by-trial basis.

Participants performed a novel cue-guided perceptual decision task, in which they were
asked to press a key corresponding to what they believed to be the target photograph on a
given trial. On each trial, prior to probe presentation, memory cues triggered reminders of
past sequential associations between the cue and target or non-target photos. Then, after
a delay, a probe stimulus displayed the target and non-target, in a noisy, rapidly flickering
stream. Thus, both parts of the trial provided partial information as to the correct response.
Choices and reaction times reflected the combination of both kinds of information, and
were best fit by an integrative two-stage accumulation of memory and sensory evidence.
Using fMRI, we showed that second-stage responses on each trial were predicted by the
reinstatement of stimulus-specific representations, the content and fidelity of which fluctuated
between trials, that developed with the time available to sample on each trial, and the content
of which reliably predicted the pattern of behavioral response. The results demonstrate that
sensory evidence accumulation in perceptual decisions reflects the influence of a preceding



phase of an inference process that is already ongoing at the onset of the visual probe.
Several recent findings can be reinterpreted in light of a continuous inference mechanism

that begins before the onset of sensory information. Multiple reports have observed, using
electrophysiology in non-human primates, “ramping” of neural activity in accumulator re-
gions during epochs preceding sensory and motor decisions [11, 28]. Hauser and colleagues
(2018) observed that pre-trial ramping activity had a meaningful influence in explaining RT
variability. Specifically, they identified ramping with variability in the onset of motor plans.
They ascribed this to a mechanism that considers countermanding motor plans. Consistent
with this view, in our model fits the second-stage non-decision time showed a trend towards
decreasing with increasing cue predictiveness (Supplemental Figure S3) – in other words, less
onset delay when discordant outcomes are less likely to be sampled. From this perspective,
our model suggests that the onset variability they identified reflects the degree to which
preparatory activity, reflecting inference about trial expectations, conflicted with sensory
information, thus delaying action.

Hanks and colleagues (2011) reported a small amount of pre-trial ramping, but found
that it did not have direct impact on subsequent behavior. It seems likely that two features
of their design worked against such a result. The first is a feature that, as we noted above, is
common to most studies involving expectation-setting: fixed priors learned to asymptote over
many hundreds of experiences. The second feature is the use of short inter-trial-intervals,
on the order of 100s of milliseconds, potentially insufficient to permit the development of
memory-guided expectations. While these aspects of their design were critical to the goals
of their study, which focused on the equilibrium dynamics of expectations in inference, they
are likely to diminish the need and/or opportunity for online inference informing the content
of expectations. Indeed, a possible unification of our results and theirs is that the dynamic
bias signal they observe is ongoing inference over the prior, and that the short anticipation
delay meant that the expectation-setting process (proceeding in parallel to sensory inference;
see below) only accumulated to an observable degree when sensory decisions persisted long
enough. Informed by our previous work on memory-guided, value-based decision-making
[12, 14, 15], the present study was designed with these considerations specifically in mind.
Further work is necessary to understand the precise conditions under which expectation-
inference does and does not have meaningful influence on the subsequent decision.

As we mentioned above, it has been observed that behavior in sensory inference tasks
tends to be best fit when accumulation parameters are allowed to vary – stochastically –
between trials [26]. This is true both when the parameters are set on the basis of known task
conditions (in other words, expectations) – for instance, when the drift rate is enhanced for a
more common stimulus [29, 30], or starting point is set to favor the more common response
[5] – and also when they are allowed to vary freely [27]. In both cases, such variability
might arise from active sampling of recent past trials, the outcomes of which would bias
accumulation parameters towards a faster, more accurate response in that previous condition.
Intriguingly, in the latter case, this would imply that inference is ongoing even when long-run
expectations are not justified [31]. It might thus be worth investigating whether signatures
of a pre-trial inference process – e.g. lower variance of diffusion parameters following longer



inter-trial-intervals (Supplemental Figure S2) – are present even in tasks without decisive
expectations.

The use of memory samples to set accumulation decision parameters in this study is also
motivated by work on reinforcement learning, in which memory-based planning is used to
accelerate learning by reducing uncertainty in the agent’s policy and state representation.
It has been shown that such memory-guided planning is particularly useful within complex
or “partially observable” state spaces [32, 33], and early on in learning of even simple tasks
[34]. We and others have also recently shown that the influence of memory on decisions
can be specifically biased by reminder cues presented before the onset of choice options
[14, 15, 35, 36], similar to the informative fractal cues presented here. In light of the present
findings, a unifying explanation of these results is that the brain is engaged in an ongoing
attempt to reduce uncertainty about the current state by drawing on memories of similar
past situations and that such reminder cues, even when incidental, are treated as meaningful
indicators of similarity.

This interpretation suggests one answer to the question of why participants in this task
use memory samples – even though the task is designed in such a way that memory samples
cannot, on their own, be decisive. Returning to the reinforcement learning terminology,
we can understand the sensory decision here as one instance of a broader class of problems,
those of state inference. Though the task used here is modeled most directly on the canonical
perceptual decision process that between two actions on the basis of a noisy stream of visual
information, Rao (2010) has shown that such sequential sampling models like we use are
formally equivalent to a rational approach taken by a reinforcement learning agent navigating
a partially observable markov decision problem (POMDP). In a POMDP, as opposed to the
fully observable MDP, the agent acquires only partial information about the current state
– e.g. the noisy sensory information and, in our task, the history of experiences with the
state that followed the given fractal cue. Their internal state representation is probabilistic
– a distribution of “beliefs” over the current state, and action selection is thus a process of
jointly inferring both the state and the action contingencies that follow. This distribution
reflects both the estimate of the current state and the uncertainty the agent has about that
estimate. An agent navigating this environment has three actions available to it – the two
motor responses, and a third “sample” action, in which it chooses to acquire additional
evidence that may help reduce uncertainty in its belief distribution, rather than to act
externally. Because new evidence from memory can do no worse than increase certainty
in the current action policy [33], the expected value of acquiring new evidence samples is
strictly non-negative, net the cost of acquiring a sample (e.g. a metabolic cost of memory
retrieval, a foregone reward in delaying action, or foregoing the opportunity for a few seconds
of rest). The agent therefore has incentive to continue taking that “sample” action as long as
it is useful for reducing uncertainty, over and above any costs. The use of memory samples
implies that the cost of acquiring a memory sample must be less than the initial value of
reducing this uncertainty in this task.

A related question is why participants respond early, before the onset of sensory informa-
tion. A similar finding was reported by Kiani and colleagues [37], who observed that monkeys



performing a direction-discrimination task of experimenter-controlled duration committed to
a decision once accumulated evidence crossed the monkeys own internally-set threshold, re-
gardless of whether more, potentially decisive, evidence was yet to come. The authors of that
study interpreted their finding as potentially indicating a “cost” of sampling or, equivalently
in both their and our setting, a cost to waiting to act, unrelated to the timing of the task
itself (their task, like ours, was of fixed length and thus did not reinforce faster responding).
What exactly gives rise to this cost remains an open question. Further work is necessary to
understand the internal trade-offs made when weighing the costs and benefits of sampling
from memory and the environment.

The finding that multiple streams of evidence are integrated raises the question of whether
such integration is purely serial, or if it can operate in parallel. In other words, does memory
sampling cease to influence choice at the time of the onset of the flickering probe – or even
before (e.g. “freezing”; Kiani et al. 38, Hoskin et al. 39) – or does it continue once that
imperative stimulus has appeared, contributing additional evidence from expectations even
as the sensory decision unfolds [11]? Our model is consistent with both possibilities, because
the second-stage drift rate that we fit can be equivalently interpreted as either the drift
rate of sensory accumulation or of the superimposed accumulation of both memory and
sensory samples. Addressing this question further will likely require neural recordings at fine
temporal resolution and broad spatial coverage, in order to identify separate, simultaneous
evidence accumulation timeseries.

Whether sampled in serial or parallel, each form of evidence must be weighted in its
contribution to the final action selection. What is the proper weighting of each, and how
is it determined? Here we show that the two kinds of information are mixed, and that the
weighting is determined in part by the dynamics of sampling each representation within each
trial, and also, implicitly, by an exogenous mechanism that decides how much to sample
from memory in the first place. Is this decision made at the cue presentation? Or is it
also a dynamic decision – are samples first drawn and then evaluated for their informational
content? Our ability to resolve these questions in this experiment was limited by the temporal
resolution of our measurements as well as aspects of the design: in this experiment the sensory
information was – inherently – more decisive than the memory. A follow-up experiment,
perhaps reversing the order of presentation of memory cues and flickering probe [40], could
build on the results and tools demonstrated here to more finely measure the effective weight
in behavior, and how that weight is determined at the level of neural activity.

One such determining factor might be the degree of confidence in the initial estimates.
Previous work has shown that the brain codes measures of confidence suitable for determining
weighting of the sensory evidence necessary to select action [41–43], and that this measure
predicts subsequent “changes of mind” on the basis of late-arriving sensory evidence [44,
45]. Recent work also suggests that a corresponding quantity is computed separately for
memory evidence [46, 47]. Do these confidence estimates inform the mixture of multiple kinds
of evidence in behavior? A related question is whether, across modalities, such measures
are absolute, reflecting only the confidence within the given representation, or are they
coded relative to the confidence available in other representations? By setting the parameter



selection exogenous to this model, we also set exogenous the likely mechanism for confidence
to influence the process. It is possible that the degree of confidence in evidence available
on the first stage can inform the parameters of the second stage – and vice-versa, since the
quality of sensory evidence is signaled ahead of time. Future extensions of this task should
bring such decision-relevant confidence under experimental measurement or control.

Because expectations are nearly omnipresent in decision-making, it is possible that pre-
vious investigations have obscured an important source of trial-by-trial variation. Decisions
may often be biased by samples from internal information – memories, but also emotions,
values, and rules – that give rise to expectations established in the moment, rather than fixed
across time. Biases, derived from experience, are helpful, and under some circumstances,
may even be necessary, for efficient decision-making – they help us take account of, and lever-
age, the statistics of our environment. Current research is outlining a role for goal-directed,
decision-time planning in a number of psychiatric conditions. Dysfunction in this mechanism
could explain disease states characterized by under- or over- reliance on expectations in be-
havior such as in Parkinsonism [9, 10], disorders of compulsion [48], or positive symptoms in
schizophrenia [49]. Consistent with the observation of Perugini and Basso 10 that deficits in
expectation-setting cannot be explained by altered dopamine function, the present findings
provide an aperture for treatments, by underscoring that biases are not simply “stamped-
in” regularities. Instead, the fact that expectations are constructed in the moment implies
that they can be changed, via targeted interactions with the construction process. Outside
of disease, biases alterable in the service of better decisions may be a crucial adaptation,
allowing organisms to adjust their behavior at a timescale faster than that of the long-run
statistics of their environment. More broadly, it means that, when it comes to individual
decisions, the link between past and present can be revisited, even changed, when the need
arises.
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Methods

Participants

33 participants (15 male, 30 right-handed; ages 18-50, mean 21.9) each performed two repe-
titions of the task in Experiment 1. Ten blocks were excluded for failing to meet one or more
criteria: if the participant failed to respond on 10% of learn or test-phase trials (nine blocks);
if the combined number of skipped trials and post-stimulus error trials during the test phase
were greater than 30% (four blocks); if the difference between calibrated accuracies for any
pair of stimuli was less than 5% (one block). Three participants failed to meet criteria for
all blocks they performed; they were excluded entirely from analysis. In all, 30 participants
and 56 blocks were included in the final analysis.

36 participants (10 male, 29 right-handed; ages 18-33, mean 23.19) each performed one
(5) or two (31) repetitions of the task in Experiment 2. (Five blocks were excluded due to
scanner malfunction (1), participant discomfort (1), or programming error (3).) 15 blocks
were excluded for failing to meet one or more criteria: nine for failing to respond on enough
learn or test-phase trials; one for failing to respond correctly or at all on enough test-phase
trials; nine for failing the calibration accuracy threshold. Five participants failed to meet
criteria for all blocks they performed; they were excluded entirely from analysis. In all, 31
participants and 52 blocks were included in the final analysis.

In Experiment 1, participants were compensated with course credit. In Experiment 2,
participants were paid a flat fee of $50. All participants reported themselves as free of
neurological or psychiatric disease, and fully consented to participate. The study protocol
was approved by the Institutional Review Board for Human Subjects at Princeton University.

Task

The experiment was controlled by a script written in Matlab (Mathworks, Natick, MA, USA),
using the Psychophysics Toolbox [50]. Both Experiment 1 and Experiment 2 consisted of
the following four phases, repeated for two blocks for each participant, with different stimuli
and task conditions as detailed below. Experiment 2 was performed in an fMRI scanner,
and consisted of an additional, fifth phase, a Localizer task described below.

In Phase 1, the Response training phase, particpants learned to map response keys to
stimuli. Four response keys – numbers one through four on a standard US keyboard – were
each associated with one of four stimuli – black and white photographs, two faces and two
natural scenes.

Stimulus photographs were chosen from a set of four possible scenes and four possible
faces. Each category was subdivided into two sets of two paired photographs. Each photo-



graph was black and white, normalized for contrast and brightness, and chosen to be highly
confusible with the paired face or scene.

Participants were first shown each photograph, centered on a black background, in order
of the associated response keys, and asked to press the current key in the sequence. In
all experiments. keys one and two corresponded to the faces, and keys three and four
corresponded to scenes. Then, the photographs were shuffled, and presented one at a time
for two seconds each. Participants were instructed to press the corresponding key. If they
pressed the correct key, a green box appeared around the photograph. If they pressed the
incorrect key, the photograph remained on the screen. Each photograph was displayed ten
times. If participants pressed the incorrect key on the first try more than twice for any
photograph, they were made to repeat the response training phase in its entirety.

Phase 2, the Calibration phase, measured the ability of participants to discriminate be-
tween each pair of photographs when they were presented in a noisy, “flickering” stream
(Figure 1). On each trial, participants were shown a rapid stream of pictures, displayed for
1/60th of a second apiece. They were instructed to press the key corresponding to the target
– the photograph shown most often. Each frame consisted of either the target photograph,
the paired same-category photograph, or a perceptual mask consisting of a phase-scrambled
version of a superposition of the two photographs. Perceptual masks were shown for be-
tween one and three frames, with mask display length chosen from a truncated, discretized
exponential distribution of mean 2. Calibration trials lasted three seconds, regardless of
response. When participants pressed a key, the stream stopped, and the target was shown
for the remainder of the trial length. If the participant pressed the correct key, a green box
appeared around the photograph. If the participant pressed the incorrect key, a red box
appeared around the photograph. A one second inter-trial-interval (ITI) followed each trial.
On each trial, the proportion of frames that contained the target photograph – the coherence
– was updated according to a Quest algorithm [51], with the goal of calibrating participants
responses to either 65% (low) or 85% (high) accuracy. Each block measured the coherence
necessary to elicit either high or low accuracy for each photograph. In Experiment 1, the first
24 participants performed 60 calibration trials per photograph, while the last 9 participants
performed 40 calibration trials per photograph. In Experiment 2, participants performed
30 calibration trials per photograph. Although Experiment 2 participants remained in the
fMRI scanner for this phase, no scanner data was collected. This is the only phase for which
scanner data was not collected.

In Experiment 1, for stimuli calibrated to low accuracy (65%), the average coherence
(proportion of non-mask frames that contained the target photograph), across participants,
blocks, and stimuli, was 60.98% (SEM 1.06%); whereas for the high-accuracy (85%) condi-
tion, the target photograph was shown on 75.88% (SEM 1.08%) of frames. In Experiment
2, these figures were 62.17% (SEM 1.03%) coherence in the low-accuracy condition, 77.66%
(SEM 1.15%) coherence in the high-accuracy condition.

Phase 3, the Sequence learning phase, provided participants with a set of experiences that
linked each of four fractal cues to the photographs (Figure 1). On each trial, participants
were shown one of four fractal cues, displayed on the screen for 750ms. In Experiment 1,



the cue was followed by a variable inter-stimulus-interval (ISI). For 24 participants, this ISI
was either 500ms, 1000ms, or 4000 ms, selected pseudorandomly at each trial according to a
uniform distribution. For the remaining 9 participants in Experiment 1, and all participants
in Experiment 2, this ISI was a fixed length of one second. After the ISI, participants were
shown either of two photographs linked to the cue, both from the same category (face or
scene). The photographs that followed the cue were selected according to one of four binomial
distributions – 50/50, 60/40, 70/30, or 80/20. The two cues in each category (face or scene)
predicted their consequents using symmetric distributions – if one cue predicted Face A with
80% probability, the other cue predicted Face B with 80% probability. Participants were
instructed to press the button corresponding to the displayed photograph. If the response
was accurate, the photograph was surrounded by a green box. If the response was inaccurate,
the photograph was surrounded by a red box. Regardless of response time or accuracy, the
picture remained on the screen for two seconds. In Experiment 1, the trial was followed
by an ITI of two seconds. In Experiment 2, the trial was followed by an ITI of between
500ms and 8000ms, chosen from a truncated exponential distribution, discretized in units
of 500ms, with mean 2000ms. This phase consisted of 100 trials, 25 for each cue, ordered
pseudorandomly.

Phase 4, the Cued inference task, was the primary test of our hypotheses. On each
trial during this phase, participants first viewed a fractal cue that predicted the likelihood
of the target photograph during the following flickering stream. Cues were presented for
750ms, and followed by an ISI of variable length, selected at each trial from a uniform
distribution. For the first 24 participants of Experiment 1, this ISI was either 500ms, 1000ms,
or 4000ms. For the remaining 9 participants of Experiment 1, this ISI was either six, eight,
or ten seconds. In Experiment 2, this ISI was either four, six, or eight seconds. In both
experiments, ISI durations were chosen from a uniform distribution over the possible values.
The flickering stream used one of the two mixture proportions calibrated during Phase 2;
mixture proportions were fixed for each category – e.g. faces might be set to low coherence,
and scenes to high coherence. Thus, the fractal cue predicted both the likely identity of the
target photograph, and also the coherence of the subsequent stream. The stream remained
on the screen for three seconds. When a key was pressed, the target photograph appeared,
and remained on the screen until the three seconds were finished. If the keypress was correct,
the photograph was surrounded by a green box. If the keypress was incorrect, the photograph
was surrounded by a red box. Participants were instructed to press the key corresponding
to the identity of the target photograph. Critically, however, participants were allowed to
respond early – during the ISI, before the flickering stream began. Participants were not given
any explicit or implicit inducement to respond early or accurately – they were informed that,
regardless of the speed or correctness of their response, all trials were of fixed length, modulo
the ISI. This phase continued for 80 trials, 20 trials of each cue, ordered pseudorandomly.

Phases one through four were repeated as two blocks, each with different fractal cues and
picture stimuli. Cue were selected pseudorandomly for each block, and the mapping from
coherence level to category was counterbalanced between blocks.

After the two blocks, Experiment 2 participants completed a final phase, Phase 5, the



Localizer task. We used the data collected in this phase to localize regions of cortex prefer-
entially active during processing of face and scene images. Participants performed a 1-back
image repeat detection task. Images were presented in mini-blocks of 10 trials each. Eight
of the pictures in each block were trial-unique, and two were repeats of the picture on the
immediately preceding trial. Repeats were inserted pseudorandomly according to a uniform
distribution. Stimuli in each mini-block were chosen from a large stimulus set of pictures not
used in the main experiment. The pictures belonged to one of four categories – faces, objects,
scenes or phase-scrambled scenes. Pictures were each presented for 500ms, and separated by
a 1.3s ISI. A total of 12 mini-blocks were presented (3 per category), with each mini-block
separated by a 12 second inter-block interval.

Imaging methods

Experiment 2 was collected while participants were laying in the fMRI scanner. Data were ac-
quired using a 3T Siemens Prisma scanner with a 64-channel volume head coil. We collected
three functional runs with a T2*-weighted gradient-echo multi-band echo-planar sequence
(44 slices oriented parallel to the long axis of the hippocampus, 2.5mm isotropic resolution,
echo time 26 ms; TR 1000 ms; flip angle 50 deg; field of view 192 mm). To allow for T1
equilibration, we discarded the first six volumes of each functional run (6s). We also col-
lected a high-resolution 3D T1-weighted MPRAGE sequence (1mm isotropic resolution) for
registration across participants to standard space. Functional image preprocessing was per-
formed using FSL (FMRIB Software Library version 5.0.8; [52, 53]). Anatomical images were
coregistered to the standard MNI152 template image, then individual participant functional
images were coregistered to the realigned anatomical images. The transformation matrices
generated during this coregistration process were used to transform Region of Interest (ROI)
images (described below, ROI definition). Functional images were motion corrected and
spatially smoothed using a 5mm full-width half-maximum Gaussian kernel prior to analysis.
Data were scaled to their global mean intensity and high-pass filtered with a cutoff period
of 128s.

Behavioral analysis

Response time analyses

Bimodality. We tested whether response time distributions within each ISI condition were
bimodal, using Hartington’s Dip Test [17]. This test measures the relative spread between
modes to the mean of the distribution – larger values indicate a higher likelihood of true
bimodality in the tested data. P-values are estimated via bootstrap against distributions
with the same summary statistics as the tested data, provided by the MATLAB function
HartigansDipTest [54].
Permutation tests for across-condition correlations. Each participant performed a different
subset of the task conditions (cue level, perceptual coherence). To provide a robust mea-
sure of the relationship between response times and conditions, we therefore performed a



bootstrap analysis, across participants and conditions [55]. On each iteration, we sampled,
with replacement, the number of participants in the study group (30 in Experiment 1, 31
in Experiment 2). We then computed, on this selected group, the correlation of interest.
By repeating the process 1,000 times, we obtained a distribution of correlation values across
shuffled permutations of the study group. The reported p-value is thus the fraction of corre-
lation values with a different sign from the base effect size (the correlation across the entire
original group). When evaluating whether these correlations differed between conditions
(e.g. for coherence levels, or for early versus late responses), we compared the difference
between the values obtained for paired bootstrap iterations (using the same selected subset
of subjects). For these tests, P -values that result from standard nonparametric tests are,
generally, trivially significant, due to the large population size. Therefore, to evaluate the
reliability of the difference we used Cohen’s d [56]; by convention effect sizes measured in
this way greater than 0.80 are “Large”, and thus reliable.

Model comparison

Multi-stage DDM. Our primary model of interest is an extension of the drift-diffusion model
[3] to allow for a time-varying drift rate [16]. The model specifies drift rate as a piecewise
constant function, in which each shift in drift rate defines a separate “stage” of the accumu-
lation process. Critically, the endpoint of one stage naturally sets the starting point of the
next. Our instantiation used two stages. The free parameters were thus the drift rates, d1
and d2, non-decision time T0, and a distribution of trial-by-trial first-stage starting points
specified by the mean x0 and standard deviation σx0,1 . We refer to this model as MSDDM.
Our comparison models were matched evidence accumulation processes that each selectively
disabled one key feature of the MSDDM – the time-varying drift rate, and the connection
between stages. The first comparison model of interest was a single DDM, with continuous
accumulation until the time of response, but no change in drift rate across the entire period
between the onset of the fractal stimulus and response. We refer to this model as 1DDM,
with free parameters d1, T0, x0, and σx0,1 . The second comparison model of interest was two
DDMs, each fit to pre-stimulus and post-stimulus responses separately and thus mirroring
the change in drift rate found in MS-DDM, but with the second starting point its own free
parameter. We refer to this model as 2DDM, with free parameters d1, d2, T0, and starting
points for each stage, defined by x0,1, σx0,1 and x0,2, σx0,2 . Each model was fit to participant
responses aggregated according to cue, coherence, and ISI condition. The fitting procedure
minimized the difference between the χ2 of the distribution of RTs in each cue-coherence-ISI
bin and the RT distribution generated by the chosen model at the given parameters. Fitting
was performed using a genetic algorithm (MATLAB Global Optimization Toolbox function
ga) that ran for 1,000 generations per parameter, at a population size of 50 per parameter.

Imaging analysis

To identify neural markers of stimulus reinstatement, we first defined patterns of activity in
ventral visual stream regions that indicated participants were processing “face” or “scene”



photographs. We then analyzed the degree to which these patterns were present during the
post-cue, pre-stimulus ISIs in Phase 4. Because no pictures were present on-screen during
this period of interest, we reasoned that greater evidence of stimulus reinstatement would
indicate that participants were recalling the cued photograph. We therefore predicted that
this reinstatement evidence would be reflected in response accuracies, response times, and
DDM model parameters.
ROI definition. We identified a region of interest consisting of voxels that (across the group)
showed preferential activation to face or scene photographs, using the following procedure.

First, for each participant, we performed a GLM analysis of BOLD signal during the
localizer task. We identified voxels that responded more to scenes or faces, relative to other
categories (univariate contrasts: faces > scenes | scrambled scenes | objects; scenes > faces
| scrambled scenes | objects). For each participant, we selected clusters in the posterior
parahippocampal region (matching the reported Parahippocampal Place Area (PPA); [20])
and posterior fusiform gyrus (matching the reported Fusiform Face Area (FFA); [19]) that
were significant at p < 0.005, uncorrected. Next, each per-participant voxel mask was
binarized; all above-threshold voxels were set to 1. To regularize the ROIs and ensure they
were consistent across participants, the resulting individual mask was then warped to match
the group average anatomical; these group-space masks were added together and the summed
image thresholded to include all voxels present in more than 90% of participants. This final
group ROI was then warped back to the individual participant space, and the result used as
the final mask for pattern analysis.
Stimulus-specific pattern analysis. We computed the pattern of activity for each target photo-
graph, across the corresponding category-preferring ROI. For each photograph in each block,
we took the average pattern of activity over the last five presentations of the photograph
during Phase 1. (The first five presentations were excluded to allow repetition suppression
and learning effects to stabilize.)

We next used these four patterns as a template for analyzing activity during the post-cue,
pre-stimulus ISI in Phase 4. For each trial, we computed, within the ROI corresponding to
the cued category, the pattern of activity between the time of cue onset and either the time of
response or one TR before the onset of the flickering stream, whichever came first. We then
correlated this activity pattern with the corresponding target pattern, defined above. These
correlation values, one for each Phase 4 trial, were then Fisher-transformed and used as
predictor variables in our analyses of interest. We refer to these values as the Reinstatement
index.
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