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How do we learn from our past decisions? According to the dominant 
model-free reinforcement learning (RL) theory of choice, actions are 
selected on the basis of expected values that are computed as running 
averages of experienced rewards. This average is updated incremen-
tally as new rewards are incorporated, resulting in a steadily decaying 
influence of past experiences1. We have previously shown that this 
pattern of dependence on experience can also result from an active 
deliberation process that draws, in a recency-weighted fashion, on 
episodic memories of relevant past choices as samples of possible out-
come values2. For instance, we might evaluate a restaurant by recalling 
recent dining experiences at similar establishments.

Both approaches assume that the influence of a past event on choice 
is a simple function of how long ago that event was experienced or 
remembered. Where they differ is in how that influence arises. In RL, 
the contribution of a given past trial to reward estimates on a given 
choice is a fixed, decreasing function of its age. In episodic sampling 
this influence is dynamic, which can cause its choices to diverge from 
RL. Because the process draws on only a few samples, a given episode 
(even sometimes one from the far past) will, when recalled, have a 
large contribution to the estimated value for that decision. At the same 
time, recent episodes could be overlooked and thus have no influence 
on the current choice. This distinction can be obscured when looking 
at average choice behavior in the sort of repeated decision task usually 
employed in the laboratory3. The difference between the predictions 
of these two models is more pronounced when incidental reminders 
of past choices are introduced to the decision-making task2. These 
reminders cue the past trial episode, recalling the action taken and 
reward received, and thus affect the next decision in a way not cap-
tured by standard RL.

However, episodic memories consist of more than just the simple 
association between action and outcome. They also carry rich informa-
tion about the temporal, spatial and visual context of an experience4,5.  

When context is reinstated, it affects what we remember next: after 
recalling one event, we are more likely to subsequently recall events 
that share context with the first6. For instance, when recalling one 
restaurant, we might also recall the street it was on, which could lead 
to recalling another restaurant from the same street.

In this way, retrieval of contextual information could influence 
decisions made by episodic sampling. Specifically, context could 
induce a form of autocorrelation in sampling: the first sample  
also brings to mind the context from which subsequent samples  
are likely to be drawn. These following samples would also have an 
impact on decisions. The average influence on choice of a past episode 
would therefore be a function both of its age and the probability that 
other, contextually related episodes would bring it to mind. This extra 
influence of context (if present) would constitute a radical depar-
ture from incremental RL, which has no means of accounting for  
this influence.

To probe whether, and by what mechanism, context biases episodic 
sampling, we designed an experiment to isolate the effects of retrieved 
context on decision-making, distinct from the effect of the initial sam-
pled trial. Participants performed a three-option choice task in which 
trials took place across seven visually distinct contexts, described as 
rooms of a virtual casino, each distinguished by a context-specific 
image of an outdoor scene. After making each choice, participants 
were shown both the reward they earned and a trial-unique object 
picture. Some of these objects were later presented during recogni-
tion memory probes that were interleaved with the choice trials.  
Of key importance, we designed the experiment such that the 
rewarded choice associated with a probed object was different from 
the choice that was most frequently rewarded in the room (context) 
where the probed object was originally presented. This procedure 
allowed us to disentangle the influence of the reminded trial episode2 
from that of the context.
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We hypothesized that, if recall of the reminded trial also triggered 
the reinstatement of context, we would observe choices to be influ-
enced by the action rewarded in the context as a whole, not just the 
action rewarded on the reminded trial itself. This hypothesis further 
implies that the effects of retrieved context on choice will only be 
evident on trials where the object’s context (room) is retrieved. To 
test this prediction, we carried out an fMRI experiment and employed 
multivariate pattern analysis (MVPA) to covertly measure neural 
evidence for context reinstatement on each trial. Pattern classifiers 
(trained to recognize scene-related activity) output a trial-by-trial  
measure of how likely it was that participants were recalling a  
past context. We used this neural reinstatement index as a mediating 
variable to predict the effect of context on choices.

Experiment 1 provided a behavioral test of influence of context. 
Experiment 2 provided both a behavioral test and a neural test (using 
fMRI) of the predictions outlined above. Taken together, these experi-
ments reveal new aspects of the computational and neural mecha-
nisms by which individual episodes of past experience are brought 
to bear on decisions for reward and introduce a new signature of 
decisions guided by episodic memory.

RESULTS
In experiment 1, 20 participants performed the task (Fig. 1) and 
their behavior was analyzed for evidence of context’s influence on 
decisions. In experiment 2, 32 additional participants performed the 
task while being scanned by fMRI, which allowed us to examine a 
neural mechanism that gives rise to—and predicts the degree of—the  
influence of context on decisions.

The following three phases were common to both experiments. In 
phase 1, participants performed 300 trials of a three-option rewarded 
choice task (Fig. 1a,b). Choices returned either $10 or $0 with vary-
ing probability (Fig. 1c and Online Methods, equation (1)). The first 
180 trials took place across six rooms (contexts), distinguished by 
the presence of one of six scene images in the background (Fig. 1a).  
In phase 2, participants visited a seventh room, where no scene images 
were visible, and made 120 further choices; 60 recognition memory 
probes were interspersed between these choices at pseudorandom 
intervals (Fig. 1b). On recognition probes, participants were asked 
whether, and with what confidence, they recognized the presented 
picture. Participants were rewarded with $0.25 for correct responses 
and penalized by the same amount for incorrect responses. The aver-
age lag between initially viewing a picture and being tested on recog-
nition of that picture was more than 170 trials (experiment 1: average 
lag 173.40 trials, s.e.m. 1.70; experiment 2: 175.88, s.e.m. 0.64). In 
phase 3, participants were given a source recognition test that assessed 
whether they could remember the room (context) in which the probed 
objects were encountered during phase 1. Experiment 2 also had a 
fourth phase, an fMRI visual category localizer task used to train the 
pattern classifiers.

Memory tasks
Participants performed well on the recognition memory probes in 
phase 2 (mean sensitivity index (d′), experiment 1: 2.51, s.e.m. 0.29, 
experiment 2: 2.43, s.e.m. 0.20). Trials with incorrect answers on the 
recognition memory probe were rare. Trials with incorrect or low-
confidence answers were excluded from further analysis because 
they were not of interest for our hypothesis; our goal was to evaluate 
the effect of successful reminders on subsequent decisions, and low- 
confidence and/or incorrect responses indicated that the reminders 
were unsuccessful. Performance on the phase-3 source recogni-
tion task was also well above chance (experiment 1 presented all 

six options, so chance level was 16.67%: actual performance mean 
45.80%, s.e.m. 5.38% correct; experiment 2 subselected three options 
to fit the MRI button box, so chance level was 33.33%: actual perform-
ance mean 68.12%, s.e.m. 2.38% correct).

Experiment 1
Our primary measurement of interest was performance on choice 
trials after the recognition memory probes. By our hypothesis, these 
trials should show a significant influence of rewards received on trials 
across the reminded context (i.e., the room in which the reminded 
trial occurred during phase 1; Supplementary Figs. 1 and 2).

We ran a multiple regression to model the effect on choice behavior 
of the recently received rewards, the identity of the recently chosen 
options, the value of the reward received on the probed trial, and 
the context reward (Table 1). This analysis identified significant and 
separable effects of each of the three sources of reward information 
(Fig. 2a); in particular, we found that memory influenced choice in 
two distinct ways. First, replicating our previous results2, we found 
that the reward content of trials evoked by memory probes influenced 
the option selected by participants on the ensuing choice trial. If the 
probed trial was not rewarded, participants were less likely to choose 
as they had on that probed trial. The reward received on the probed 
trial was a significant predictor of choice (t(19) = 2.2043, P = 0.04), 
with a mean regression weight of comparable magnitude to that of 
rewards directly received three trials earlier.

Expanding beyond the previous results, we also found an effect of 
the rewards received for a given deck across other trials within the con-
text of the probed trial (hereafter, the context reward; equation (2)). 
On choice trials following a memory probe, participants were more 
likely to choose a deck the greater was its proportion of trials being 
rewarded across the reminded context. This context reward was also a 
significant predictor of choices after a probe (t(19) = 3.55, P = 0.0021),  
with a mean regression weight of comparable magnitude to that of the 
reward received for direct experience just one or two trials previous. 
The effect of the reminded context was greater than the effect of the 
reminded trial (t(19) = 2.7262, P = 0.0134).

Experiment 2
We then repeated the behavioral task from the first experiment  
with a new group of 32 participants. In this version, participants 
underwent fMRI scanning to allow us to identify brain activity pre-
dictive of the context reward effect. The results support the hypoth-
esis that evoked context has a separate and strong influence on  
choice (Fig. 2b).

Critically, as in the first experiment, the reward from the reminded 
context again had a significant effect on subsequent choice (t(31) = 2.4457,  
P = 0.0190). As in experiment 1, the effect of reminded context was 
again greater than the effect of the reminded trial (t(31) = 2.2613,  
P = 0.0309). However, diverging from the results observed in 
experiment 1 and the preceding study2, the reward received on the  
probed trial did not have a significant effect on subsequent choice 
(t(31) = −0.4878, P = 0.629). Post hoc simulations confirmed that 
both the relative prominence of the reminded context effect over the 
reminded trial effect and the sparing of the context effect when the 
single trial effect was not statistically reliable are consistent with our 
context-aware sampling mechanism. The intuition here is that, while 
the probe initially triggers sampling of the reminded trial, subsequent 
samples taken from the reminded context will outweigh the effects of 
sampling the reminded trial (Supplementary Figs. 3 and 4).

Regression results are incompatible with incremental learning  
models. For the analyses reported above, we designed our context 
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reward regressor to capture the average effect of sampling memories 
from the probed context: for a given context, each episode in that 
context in which a given card deck was chosen was treated as evi-
dence for or against choosing that card deck (depending or whether 
the choice was rewarded). This way of computing context reward 
is qualitatively different from that which would be predicted by  
an incremental learning algorithm such as model-free temporal- 
difference learning. This is because those incremental algorithms 
would more heavily weight later experiences and those with higher 
reward prediction errors. However, in our formulation, every trial 
from the probed context has equal weight.

To explore whether the observed context reward effect could be 
explained by incrementally learned action values, as in model-free RL, 
we first fit RL models to choices in each of the six context rooms. Each 
model learned cached action values for the three card decks; two of 
these models reset those values when context changed: in one model, 
the context shifted and value reset at the time that the room changed; 
in the other model, values were reset at a variable trial number after 
the start of each room (to account for the possibility that context 
boundaries were inferred at the time the payoffs changed).

The model that reset action values when the room changed was 
the best fit to behavior. By Bayesian information criterion versus 

Choice:
max 3 s

Object display: 2 s

Outcome: 1.5 s

ITI: 0.5–7.0 s

Choice:
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Outcome: 1.5 s
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Figure 1  Task design. Participants (experiment 1: 20; experiment 2: 32) performed 300 trials of a three-option sequential choice task. (a) Context 
learning. On each trial, participants chose between three card decks, each with a different, unsignaled, probability of paying out a $10 reward, as opposed 
to $0. After a deck was chosen, the top card was turned over, revealing a trial-unique object photograph. The first 180 choices took place in six rooms 
of a virtual casino. Rooms were distinguished by background photographs of outdoor scenes. (b) Memory probes. The final 120 choices took place in a 
seventh room, which did not have a scene photograph in the background. Choices in this room were also rewarded, but did not result in object pictures. 
Interspersed among choices trials were 60 memory probe trials, which tested whether, and with what confidence, subjects remembered a given object 
picture. (c) Example payoff time series. The probability that each deck would pay out $10 changed on each trial according to a Gaussian random walk 
centered around one of three distinct values: 60%, 30% and 10%. Purple bands denote the first ten trials in each new context room; after the tenth trial, 
the center values were shuffled across decks, such that the previous highest-paying deck was no longer the best option. Images selected for memory probes 
were drawn only from these first ten trials in each room, distinguishing the reward values of probed trials from those of the rest of the context.
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the second-best model, in experiment 1, the room-reset model was 
superior for 18 of 20 subjects, mean difference in Bayesian informa-
tion criterion 5.6981; in experiment 2, 26 of 32 subjects, 4.6406. The 
fit parameters for the room-reset model—learning rate α, softmax 
temperature β, choice stickiness βp—were as follows: experiment 1 
α mean 0.4802, s.e.m. 0.0617, β mean 0.2333, s.e.m. 0.2829, βp mean 
0.4348, s.e.m. 0.1392; experiment 2 α mean 0.5738, s.e.m. 0.0375, 
β mean 0.4623, s.e.m. 0.0313, βp mean 0.2231, s.e.m. 0.0738. These 
values were consistent across the two experiments (by unpaired,  
two-sample t-test: α: t(50) = 1.3775, P = 0.175; β: t(50) = −1.0137,  
P = 0.316, βp: t(50) = 1.4694, P = 0.148).

We took the final values computed by this model for each card 
deck in each context and used them as context reward regressors 
in a regression analysis following that of Figure 2. The mean cor-
relation between this new regressor and the corresponding original 
regressor was R = 0.0564 (s.e.m. 0.0645, t(19) = 0.8749, P = 0.393) 
in experiment 1 and R = 0.1714 (s.e.m. 0.0313, t(31) = 5.4768,  
P = 5.47 × 10−6) in experiment 2. In each experiment the effect  
of this RL-derived context reward (βRLCR) was significant or trend-
ing, but, critically, negative (experiment 1, βRLCR = −0.0125, s.e.m. 
0.0058, t(19) = 2.1484, P = 0.0448 across subjects; experiment 2,  
βRLCR = −0.0091, s.e.m. 0.0050, t(31) = −1.8156, P = 0.0791). When both 

the original context reward and this new RL version were run alongside  
each other in a simultaneous regression, the weights to the original 
(βCR) were unchanged compared to when run alone (experiment 1: 
in the simultaneous regression, βCR = 0.2335, s.e.m. 0.0643; the differ-
ence between this and the original was not significant, t(19) = −0.1710,  
P = 0.866; experiment 2: in the simultaneous regression, βCR = 0.1306, 
s.e.m. 0.0427; the difference between this and the original was not sig-
nificant, t(31) = −0.4515, P = 0.655). Therefore, incrementally learned 
action values cannot explain our observed results.

fMRI analysis. Previous work in our lab has shown that classifiers 
trained to identify fMRI correlates of scene processing can be used to 
track mental reinstatement of contexts in which scenes had previously 
been presented; furthermore, these neural measures of context rein-
statement predict memory behavior7. We therefore used this same strat-
egy in our study, ‘tagging’ some contexts with scene pictures and then 
using scene evidence as a covert neural measure of context reinstate-
ment. As both the probe image and the seventh room in which probes 
were presented were devoid of scene images, we interpret evidence of 
scene processing on probe trials as indicative of memory reinstate-
ments; in particular, of the scenes presented during the first six rooms 
of the experiment. On this basis we hypothesized that, as scene evidence 
increased, so too would the effect on decisions of context reward.
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Figure 2  Context reward influences choices following a probe. Multiple linear regression of three sources of reward information on choices following a 
probe. The increase in choice weight for a given deck resulting from each reward term is plotted here as the median (± one quartile) across participants, 
separately for each experiment (a for experiment 1, b for experiment 2). Columns 1–3 show the effect of recent rewards, which reflects an exponentially 
decaying influence of recent experience of the sort that could arise from either incremental model-free RL or recency-weighted sampling models. These 
effects were significant in both experiments (experiment 1: R−1: t(19) = 7.8678, P < 0.0001; R−2: t(19) = 9.5878, P < 0.0001; R−3: t(19) = 3.0066,  
P = 0.0073; experiment 2: R−1: t(31) = 11.8339, P < 0.0001, R−2: t(31) = 9.2157, P < 0.0001; R−3: t(31) = 9.6940, P < 0.0001). Column 4  
shows the effect of reward received on the probed trial. This effect was significant in experiment 1 (t(19) = 2.2043, P = 0.04), but not experiment 2 
(t(31) = −0.4878, P = 0.629). Column five shows the effect of rewards received in the context of the probed trial. This effect was significant in both 
experiments (experiment 1: t(19) = 3.5488, P = 0.0021; experiment 2: t(31) = 2.4457, P = 0.019). *P < 0.05, **P < 0.01, ***P < 0.001.

Table 1  Example regression design matrix
Deck, Trial DI−1 DR−1 DR−2 DR−3 EI−1 ER−1 EC−1

Red, 4 1 0 1 1 0 0 0
Blue, 4 0 0 0 0 1 1 0.17
Green, 4 0 0 0 0 0 0 0.44

This table depicts the rows of the design matrix that code for the fourth trial, given the following scenario: red was selected on the three preceding choice trials, the first two of 
which resulted in rewards; after the third red trial, a memory probe was presented that evoked a trial on which blue was chosen, in a context in which blue was chosen on 12 trials 
and rewarded on 7 and in which green was chosen on 18 trials and rewarded on 13. The regression design contains three rows for each trial, each reflecting the contribution  
of the independent variables to the probability of picking a given deck (red, green or blue). The independent variables encode the presence of choice-relevant information on 
recent trials. For instance, the first column (DI−1) indicates whether the deck of interest was selected on the most recent choice trial. The second column (DR−1) indicates whether 
the deck of interest was associated with reward on the most recent choice trial. The third and fourth (DR−2, DR−3) columns indicate whether the deck of interest was associated 
with reward on the preceding two choice trials. If the most recent trial before the current choice was a memory probe, the fifth through seventh columns contain indicators of  
the choice and value information on the trial evoked by the probed image: respectively, the identity of the deck chosen on the reminded trial (EI−1), whether or not that choice 
resulted in reward (ER−1), and the reward received for choosing the given deck across the room in which the reminded trial took place (EC−1) (Online Methods, equation (2)).  
The dependent variable predicted by the regression was a 1 or 0, encoding whether the deck of interest was selected on the current trial (trial 4 in this example). The resulting 
regression coefficients reflect the contribution of each variable to the probability of choosing as the participant did.
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We first identified regions of bilateral posterior parahippocampal 
cortex that were preferentially activated by the processing of scene 
images, using a post-task localizer scan where participants viewed 
scene images (and other kinds of images) that were not in the experi-
ment (Fig. 3a). We then selected post-probe time points on which 
to perform our analysis. We selected as time points of interest those 
volumes following the presentation of a memory probe that reliably 
showed elevated classifier evidence for scenes (Fig. 3b). Based on this 
measure, time points four through six, representing the period from 
~8 to ~12 s after the onset of the probe image, were selected as our 
time points of interest.

We then split probe trials into quartiles for each participant, based 
on the average level of scene evidence across the time points of interest 
in each trial. In other words, although these time points were selected 
because they showed elevated scene evidence on average, our analysis 
of interest relied on the variance in scene evidence across probe tri-
als. Specifically, we assessed whether scene evidence on probe trials 
predicted the effect of context reward on choices following those 
probes. For each quartile, we again ran the behavioral regression 
above and calculated the size of the context reward effect, measured 
as the standardized regression weight applied to the context reward 
regressor computed as above. This regression weight was normalized 
to account for the different variance in the variable of interest across 
bins. We found that, on average, the influence of context reward 
increased along with classifier evidence for scenes (Fig. 3c, differ-
ence between lowest and highest quartile significant: t(31) = −3.2756,  

P = 0.0026; within subjects, a linear trend across the quartiles  
was positive and reliable: mean slope 0.041, s.e.m. 0.0114, t(31) = 
3.5734, P = 0.0012).

Context reward is specifically modulated by scene evidence in parahip-
pocampal place area (PPA). To confirm that scene reinstatement specif-
ically modulated context reward, we repeated the analysis in Figure 3c 
for each of our regressors of interest. We found that scene evidence did 
not reliably modulate any of the other regressors of interest (all P > 0.14;  
Supplementary Fig. 5). Similar analyses excluded the possibility that 
our results could be explained by univariate activity or classifier evi-
dence in several control regions (Supplementary Figs. 6 and 7).

Reinstatement of individual scenes predicts the influence of context 
reward. We next examined whether the patterns reinstated at probe 
trials were specific to individual room contexts. To test this, we first 
produced, for each participant and each context room, a template 
pattern consisting of the average PPA activity across all trials within 
that room. We then computed, at each probe trial that evoked a past 
decision, the average pattern in PPA across our time points of interest  
(Fig. 3b). The evoked patterns were consistently in favor of the 
reminded room. On high-confidence, correct trials, the average 
(Fisher-transformed) correlation between the pattern at probe and 
the room-pattern matching the context of the reminded trial was 
0.0377 (s.e.m. 0.0047, t(31) = 7.9494, P = 5.65 × 10−9 across subjects), 
while the average correlation with the non-reminded contexts was 
0.0015 (s.e.m. 0.0014, t(31) = 1.0207, P = 0.315). Across subjects, the 
correlation with the reminded context was reliably larger than that 
with non-reminded contexts (t(31) = 6.7397, P = 1.52 × 10−7).

We next incorporated this specific-scene measure into our  
regression, where it improved our estimation of the effect of context 
reward on choice. First, we turned the correlation values at each trial 
into a distribution of weights across the six possible contexts, by  
first adding 1 to each value (so they were all positive values within  
the range from 0 to 2) and then dividing each by the sum across all 
correlations. This produced a real number between 0 and 1 reflect-
ing the relative strength of evidence for reinstatement of each con-
text room. Then we computed the context reward regressor again  
for all six contexts and multiplied these values by the correspond-
ing specific-scene evidence, resulting in a distribution of context 
reward values scaled by the reinstatement evidence for each context. 
Finally, the sum of these scaled values was entered into the regres-
sion as a reinstatement-weighted version of the original context  
reward regressor.

Consistent with the idea that the specific content of reinstatements 
was a strong influence on choices, the regression weight assigned to 
the evidence-scaled context reward regressor (βRCR) was reliably posi-
tive (mean = 0.3851, s.e.m. 0.0863, t(31) = 4.4611, P = 1.00 × 10−4). 
The regression model containing the new, evidence-scaled version 
of the context reward was consistently better than the original model 
(average difference in R2 = 0.0041, s.e.m. 0.0016, t(31) = −2.6794,  
P = 0.0117). When the two versions of the regressor were placed along-
side each other in the same regression model, the original variable 
was assigned essentially no regression weight (average βCR = 0.0141, 
s.e.m. 0.0472, t(31) = 0.8676, P = 0.392), while the scene-specific 
scaled variant remained a strong and consistent predictor of choices 
(mean βRCR = 0.3923, s.e.m. 0.0877, t(31) = 4.4732, P = 9.66 × 10−5). 
Supporting the hypothesis that these reinstatements reflect memory 
retrieval2,8, we observed that the entropy of each trial’s distribution 
of specific-scene reinstatement weights was positively correlated with 
activity in hippocampus (Supplementary Fig. 8).

Together, these results affirm a specific and measurable role for 
context-aware episodic sampling during decisions for reward.
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Figure 3  Context reward effect is mediated by scene reinstatement. 
(a) We trained a classifier to discriminate between scenes, scrambled 
scenes and objects on the basis of activity in a scene-preferring region of 
parahippocampal cortex. (b) Across subjects and trials, we selected the 
post-probe time points that showed elevated classifier evidence for scenes 
(*P < 0.05). (c) For each participant, we split choice trials following the 
probes into quartiles based on scene evidence during the selected time 
points. Repeating the regression of Figure 2 for each quartile of trials,  
we found that context reward effect was greater when scene evidence was 
higher (mean slope 0.041, s.e.m. 0.0114, t(31) = 3.5734, P = 0.0012; 
plotted for each bin are the median ± one quartile, across participants, of 
the standardized regression coefficients for the context reward effect).
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DISCUSSION
Context is a critical aspect of episodic memories. Events do not hap-
pen in isolation; the memories of our lived experiences are necessar-
ily situated within a web of associations with internal and external 
state: where they happened, who they happened with and what else 
happened in relation. Items can cue retrieval of contextual features 
and vice versa5. When we bring our memories of the past to bear in 
deciding what actions to take in the present, it stands to reason that 
this rich contextual web will affect which memories are recalled and, 
through this, what decisions we make. However, previous work—even 
work investigating the use of episodic memory in decisions—has not 
examined the impact of contextual associations on choice.

In this study, we investigated how memory for the context of past 
choice outcomes can affect present decisions for reward. We observed 
that decisions were biased by incidental memory probes that reminded 
participants of past choice trials. We observed a separate influence of 
both reward information on the reminded trial and reward informa-
tion on other trials that shared context with the reminded trial. This 
influence of reminders is not captured by RL models, and the influ-
ence of context in particular is a new prediction of episodic sampling2, 
tested here for to our knowledge the first time. Across studies, the 
effect of the reminded context on choices was consistently greater 
than that of the individual reminded trial. This relationship matches 
our proposed sequential sampling model, where successive samples 
after that of the reminded trial are drawn from a linked context whose 
reward statistics were designed to run counter to those of the probed 
trials (Supplementary Fig. 3). The effect of both the reminded trial 
and its associated context were reduced in the second experiment. 
However, as predicted by the episodic sampling model, the effect of 
the reminded context remained proportionally stronger than that of 
the reminded trial and, critically, a significant influence on choices 
(Supplementary Fig. 4).

To investigate the neural mechanism that gives rise to this effect, we 
used pattern classifiers trained on fMRI data to produce a continuous 
neural measurement of evidence for whether participants reinstated 
context from memory. Critically, we showed that this neural meas-
urement predicted the size of the behavioral effect: The extent to 
which participants bring to mind the context of past episodes was 
correlated with the influence of context reward on decisions. These 
results are consistent with computational models of temporal context 
memory9: a central prediction of these models is that, when context 
is reinstated, this leads to more memories being recalled from the 
same context5. The present results tie together this effect of context 
on memory recall, and the neural mechanisms that mediate the effect, 
with recent findings that support a function for episodic memory 
recall in deliberative decisions for reward2,10.

The mechanism presented here is distinct from, but complementary 
to, the mechanism thought to underlie previous observations of epi-
sodic memory’s involvement in decisions via spreading associations11. 
In that study, Wimmer and Shohamy showed that pairing rewards 
with unvalenced images can ‘spread’ that reward (during learning) 
to other unvalenced images that had been associated with the first 
and that this second-order reward association can induce a prefer-
ence for the latter image. Our experiment design has a more complex 
associative structure that makes this kind of account involving reward 
spreading during learning highly unlikely. To get spreading during 
learning, we would need to posit that, when participants make choices 
late in the context (for example, choosing the blue deck and getting 
rewarded), they mentally activate objects shown early in the context 
(for example, binoculars) and associate those objects to the blue deck 
getting rewarded. This is implausible because the only route for the 

binoculars to be activated is via their link to the context image, and the 
binoculars were just one of tens of items that were linked to this con-
text; this high ‘fan-out’ of associations from the context image makes 
it unlikely that participants will strongly activate binoculars or any 
other single previous item from the context. In any case, even if this 
did happen infrequently, it is highly implausible that it would happen 
enough to explain our finding that indirect, contextually mediated 
associations actually exert a stronger effect on subsequent choice than 
direct associations. We argue that, rather than spreading of associa-
tions between stimuli and reward during learning, our results arise 
from dynamic estimation of that value at the time of choice, based 
on contextually mediated sampling. The distinction between these 
two types of memory-guided decisions reflects the proposed divi-
sion12 between ‘retrospective’ (referring to the findings of Wimmer 
and Shohamy11) and ‘prospective’ (this study; also Bornstein et al.2) 
integration. We provide here the first demonstration, to our knowl-
edge, that such prospective integration is mediated by context-guided 
sampling from episodic memory and that this context information 
induces sequential dependencies in the integration process. This case 
for prospective, dynamic estimation of value through sampling is con-
vergently supported by our regression modeling (showing that indi-
rect, contextually mediated effects are larger than direct effects and 
that these effects cannot be explained by incremental learning), simu-
lation work (showing that our context-guided sampling model can 
account for context effects exceeding direct effects; Supplementary 
Figs. 3 and 4) and neural data (showing that variance in retrieval of 
specific scene contexts at the time of choice predicts how strongly 
context memory affects decision behavior).

A key contribution of the present work is that it sharply distin-
guishes the pattern of choices arising from episodic sampling from 
those predicted by model-free RL. Our previous work assumed only 
that episodic memories were drawn according to their recency, yield-
ing a dependence of decisions on past experience that follows the 
same qualitative form as that of incremental RL2. If that recency-
dependent sampling were the only way that episodic memories trans-
lated to decisions, then it could be argued that model-free RL fits 
to behavior capture an approximate, average form of the underly-
ing mechanism. However, the discovery that samples depend in part 
on context undermines the generalizability of that analogy because 
context can induce sequential dependencies into the sampling proc-
ess that are not explainable in terms of simple recency. Our results 
suggest that, to estimate the influence that a given past trial will have 
on the current decision, we must know not only its age, but also the 
relative likelihood that it might be brought to mind by the recall of 
other past trials. In this study, the context was made visually explicit, 
but in natural environments, contextual links between episodes may 
arise from a wide array of external or internal associations13; as such, 
we expect these contextual effects on decision-making to be ubiqui-
tous in everyday life.

More generally, the present findings pose a challenge for economic 
approaches to modeling decisions. This is because standard economic 
models eschew consideration of the underlying mechanism, instead 
focusing exclusively on inferring stable preferences as ‘revealed’ via 
actual choices14. Contrary to this view, our results suggest that choices 
do not always depend solely on stable preferences; instead, they are 
constructed dynamically at the time of decision15,16 and, critically, 
via a process that draws on a complex web of contextual associations 
that might be only incidentally related to past decisions of the same 
kind. This idea considerably complicates models of decision making, 
but it also provides a way forward: by drawing on our understand-
ing of the cognitive and neural mechanisms giving rise to decisions 
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(here, episodic memory retrieval and contextual reinstatement), we 
account in a principled way for variance in choice behavior that would 
otherwise be attributed to noise.

Methods
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Participants. Twenty-three participants (12 female, mean age 24, range 18–50) 
performed the task in experiment 1. Three were excluded for failing memory test 
criteria (object recognition memory in phase 2 at d′ < 1 or for source recognition 
performance during phase 3 not significantly different from chance), leaving 20 
participants included in the analyses presented here. Thirty-eight participants  
(21 female, mean age 25, range 18–64) performed the task in experiment 2. One 
was excluded for excessive motion during the scan, one was excluded for falling 
asleep during the scan and four were excluded for a programming error that 
caused unrecorded responses, leaving 32 participants included in the analyses 
presented here. All participants were free of neurological or psychiatric disease 
and fully consented to participate. Participants were not screened on the basis of 
color vision (colored choice options remained in the same spatial layout through-
out the experiment). The study protocol was approved by the Institutional Review 
Board for Human Subjects at Princeton University.

Task. The experiment was controlled by a script written in Matlab (MathWorks, 
Natick, MA, USA), using the Psychophysics Toolbox17. Participants performed a 
series of 300 choices between three differently colored card decks with continu-
ously changing probabilities of reward.

The experiment proceeded in four phases. In phase 1, the Contexts phase,  
180 choice trials were presented across six consecutive rooms of a virtual casino 
(Fig. 1). Rooms were distinguished by the presence of one of six background 
images of natural scenes. Choices resulted in the top card of the chosen deck being 
turned over to reveal a trial-unique picture of an everyday object, followed by 
the presentation of a reward of $10 or $0 (described in detail below, “Choice tri-
als”). The probability that each deck would deliver a $10 reward changed on each 
trial. This probability was generated according to the procedure described under 
“Payoffs.” Following phase 1, participants were asked to rest for as long as they 
needed and to indicate their desire to continue by pressing any button twice.

In phase 2, the Probes phase, participants performed 120 additional choice 
trials, along with 60 memory probe trials interspersed at pseudorandom intervals 
whereby we tested recognition memory for objects from phase 1 (see “Phase 2 
recognition probes” below). During this phase, participants were told that they 
had entered a seventh, ‘unfinished’, room of the casino. In this seventh room, the 
screen no longer contained a background scene image. Choices in the seventh 
room did not return object pictures, but continued to be rewarded according to 
slowly varying payoff probabilities.

In phase 3, the Source Recognition phase, participants answered 50 source 
recognition memory questions in which they were asked to match a previ-
ously encountered object image to the scene (context) in which it had appeared  
(in experiment 1, the choice was out of all six scenes, while in experiment 2 the 
choice was among three presented options to fit the constraints of the MRI button 
box and for clarity of identification on the projected screen).

Lastly, in phase 4, the Localizer phase, participants performed a blocked, one-
back image repeat detection task. This task was used to identify fMRI responses to 
three image categories: objects, scenes and scrambled scenes. The detailed timing 
and structure of trials in each of these four phases are described below.

Prior to the experiment, participants were given written and verbal instruc-
tions as to the types of trials, the payoff probabilities, the button presses required 
of them and the rules for determining the final payout. They were told that the 
decks had different probabilities of paying out, that these probabilities would 
continually change and that the probabilities of each deck paying out were inde-
pendent of each other (as were the outcomes themselves). They were also told 
that that no aspect of the decks or choice process would change when traveling 
between rooms—in other words, one could not expect payoff probabilities to 
shift suddenly when the rooms did—but that the payoff probabilities would 
occasionally change dramatically, in addition to continuously changing slowly. 
Instructions emphasized that there was no pattern linking the content of the 
object pictures to their dollar value or deck. Participants were not told that the 
phase 2 memory probe trials should have an effect on their choices, nor was any 
effect implied. They were, however, told that their final payout would depend in 
part on their later memory linking the object pictures to the room scenes. To aid 
their memory, participants practiced, and were encouraged to use, an elaborative 
encoding strategy in which they would construct, but not vocalize, a sentence 
describing the object being used in the background scene (for example, for the 
object-scene shown pair in Figure 1, an example sentence might be, “I use these 

binoculars to look at the city skyline.”). After participants read the instructions, 
the experimenter verbally administered a quiz testing their knowledge of the 
payout rules, room structure and encoding strategy.

Once in the scanner, participants performed four practice choice trials and one 
practice memory probe trial, all unscanned, before beginning the main experi-
ment. If participants failed the practice memory probe trial or expressed a desire 
to practice again, the practice trials were repeated until both the participant and 
operator were satisfied.

Choice trials. On each choice trial in phase 1 and phase 2, participants were 
presented with three card decks, colored red, green and blue (order pseudoran-
domized across participants), arrayed across a green table along the top of the 
screen (Fig. 1a). In phase 1, the background of the screen contained a picture 
of one of six outdoor scenes. The background scene remained consistent for  
30 consecutive trials, then changed at the onset of next room. Participants were 
given 3 s to make a choice between the decks. Decks were chosen by pressing the 
“1”, “2” or “3” key in experiment 1 and the buttons under the index, middle or 
ring finger in experiment 2, corresponding to the decks from left to right. When 
a choice was made, the unchosen decks were hidden and the chosen deck was 
isolated on the green table, and it remained so until the end of the 3-s choice 
period. For phase 1 only, the top card of the chosen deck was turned over to reveal 
a trial-unique picture of an everyday object. This picture remained on the screen 
for 2 s, and then the card was turned back over. The isolated deck remained on the 
screen and a reward value was displayed: either $10 (a picture of a US $10 bill) or 
$0 (a phase-scrambled version of the same bill). The reward value remained on 
the screen for 1.5 s, followed by a blank screen for an inter-trial-interval (ITI) of 
length varying between 0.5 and 8 s, mean 1 s, selected from a truncated, discre-
tized exponential distribution generated pseudorandomly for each participant. 
Between rooms, participants were shown a screen with the name of the next 
room, and a countdown from 4 s before the next room began.

Payoffs. For phase 1 and phase 2, choices resulted in rewards with amounts 
selected according to continually changing probabilities. The probability that each 
deck i would pay out $10, πi,t, changed independently on each trial according a 
decaying Gaussian random walk with reflecting bounds at 5% and 95% (Fig. 1b). 
Specifically, for each deck i, payoffs were computed according to equation (1): 

p lp l qi t i t i v, , ( ) ( )+ = + − +1 1 1

The initial values of the payoff probabilities, πi,0, were set to 60%, 30% and 10%, 
assigned pseudorandomly without replacement to each deck. The value of the 
stickiness parameter λ was 0.6, the drift target θi was set to the initial payoff for 
each deck, and the diffusion noise ν was zero-mean Gaussian with s.d. σd = 8. For 
the first three trials of each room, the stickiness parameter was temporarily set 
to 0.95, to ensure that outcomes affirmed to the participants that the preceding 
payoff probabilities carried through to the new room—in other words, that the 
decks remained the same, despite the change in rooms. Between the tenth and 
eleventh trial in each room, the targets θi of each payoff time series were shuffled 
such that the deck that previously had the highest payout would no longer have 
the highest payout. Memory probe images, however, were chosen exclusively 
from the first ten trials of each room. In the seventh room, the payoffs continued 
drifting as above, with drift targets continuing to swap every thirty trials.

Phase 2: recognition probes. In the seventh room (the Probes phase) the series 
of choices was interrupted at pseudorandom intervals by 60 recognition memory 
probes (Fig. 1b). Participants were questioned on their memory for an object 
photograph. Fifty of the probed photographs had been previously presented on a 
choice trial during phase 1; the remaining 10 were novel lures. The probe images 
were chosen from the first ten trials of the context rooms, as these trials had differ-
ent payoff values than did the other 20 trials in each room. This feature allowed us 
to distinguish the influence of memories for the reminded trial from the influence 
of the reminded context. Participants were instructed to press keys indicating 
their memory and their confidence level: “1” (indicating highly confident that 
it was an image they had seen before) through “4” (indicating highly confident 
that this was an image they had not seen before). For MRI experiment 2, buttons 
were numbered left to right for the fingers on the right hand, from index finger 
“1” to pinky finger “4”.

Correct responses—“1” or “2” for previously seen images, or “3” or “4” for 
images that were not displayed on a previous trial—were rewarded with $0.25 
added to the participant’s total payout. This additional reward was indicated by 

(1)(1)
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a photograph of a US quarter with a green ″+″ to the left. Incorrect responses 
resulted in $0.25 being deducted from the participant’s total payout, indicated 
by a red ″–″ to the left of an image of a US quarter. Memory probe rewards were 
displayed for 2 s.

Rewards for memory probes accumulated over the course of the entire task, 
rather than for randomly selected rounds, so the total payout could be reduced or 
increased by as much as $15.00. Probe images remained on the screen for up to 3 s.  
If no answer was entered in that time, the trial was scored as incorrect.

Phase 3: source recognition test. Before the experiment began, participants were 
instructed to remember as many of the object pictures as possible, along with 
their associated rooms. Their memory for these pairings was tested in 50 post-
task source recognition probes. Post-task memory probes were drawn from the 
set of pictures shown during phase 1 that were also tested in phase 2 recognition 
memory probes. Participants were presented with an object picture and candidate 
rooms (all six in experiment 1, but only three in experiment 2 to restrict responses 
to the one-handed button box used in fMRI) and asked to select the room in 
which they first saw the object photograph. Each incorrect answer reduced the 
number of $10 rewards in their pile. The final payout was then determined as 
the sum of two pseudorandomly selected choice trials, drawn from the set of 
trials that remained after removing $10 rewards according to the results of the 
post-task source recognition test.

Phase 4: localizer. To allow us to localize regions of cortex preferentially 
active during processing of scene images, participants performed a one-back 
image repeat detection task. During this localizer task, images were presented 
in mini-blocks of ten images. Stimuli in each mini-block were chosen from a 
large stimulus set of pictures not used in the main experiment, belonging to 
one of three categories: objects, scenes or phase-scrambled scenes. Images were 
each presented for 500 ms and were separated by a 1.3-s ISI. Eight of the images 
in each block were trial-unique and two were repeats. Repeats were inserted 
pseudorandomly, according to a uniform distribution. A total of 30 mini-blocks 
were presented (10 per each category), with each mini-block separated by a 12-s 
inter-block interval.

Imaging methods. Data were acquired using a 3T Siemens Skyra scanner with 
a 20-channel volume head coil. We collected two functional runs with a T2*-
weighted gradient-echo echo-planar sequence (37 oblique axial slices, 3 mm 
isotropic resolution, echo time 27.0 ms; repetition time (TR) 2,080 ms; flip 
angle 64; field of view 192 mm). The first four volumes of each functional run 
(8.32 s) were discarded to allow for T1 equilibration effects. We also collected 
a high-resolution 3D T1-weighted MPRAGE sequence for registration across 
participants to standard space. Functional image preprocessing was performed 
using FSL (FMRIB Software Library version 5.0.4)18. Anatomical images were 
coregistered to the standard MNI152 template image and then individual par-
ticipant functional images were coregistered to the realigned anatomical images. 
The transformation matrices generated during this coregistration process were 
used to transform region of interest (ROI) images (described below under “ROI 
definition”). Functional images were motion corrected and spatially smoothed 
using a 5-mm full-width half-maximum Gaussian kernel before analysis. Data 
were scaled to their global mean intensity and high-pass filtered with a cutoff 
period of 128 s. Pattern analyses were performed using the Princeton Multi-Voxel 
Pattern Analysis Toolbox (MVPA Toolbox; http://www.pni.princeton.edu/mvpa/) 
and custom code implemented in Matlab.

Behavioral analysis. Regression analysis. To examine the influence of past trials 
on choice in phase 2, we conducted a regression analysis relating the outcomes 
of past choices to the choice made on the current trial. This regression included 
outcomes both from choice trials where rewards were directly experienced and 
from trials evoked by memory probes.

We constructed the following design matrix three times, once with each deck—
red, green and blue—as the given deck of interest. We first entered into the regres-
sion the identity of the deck chosen on the previous trial: 1 for the given deck,  
0 for others. Next we entered variables describing the directly received rewards.  
If a reward was received after choosing the given deck on trial t − τ, this was coded 
as a 1 in regressor τ, element t. If no reward was received after choosing the given 
deck, this was coded as a 0.

Next we included two variables encoding aspects of the reminded trial (i.e., the 
trial cued by the memory probe, if there was a memory probe on the preceding 

trial). The first regressor encoded the evoked identity of the deck chosen on the 
reminded trial (again, 1 for the given deck, 0 for others) and the second regressor 
encoded the evoked reward received on the reminded trial.

Context reward. The final regressor encoded the context reward, the net reward 
actually experienced for choosing the given deck within the evoked context. As 
discussed in the Results, we designed this regressor to capture the average effect 
of sampling memories from the probed context.

For each deck, this value was calculated as the number of trials on which the 
option was chosen and rewarded, minus the number of trials on which the option 
was chosen and not rewarded, divided by the total number of trials on which the 
option was chosen. Explicitly, for deck i in context C, this value is 

EC
no choices of resulting in no choices of resulting inC i i i, . $ .

=
−10 $$

.
( )

0
2

no times choseni

If a deck was not chosen in the evoked context, ECC,i was set to zero. If the 
preceding trial was not a memory probe, the evoked identity, evoked reward and 
evoked context reward were all set to zero. In the dependent variable, choices were 
coded as 1 if the given deck was chosen and 0 otherwise.

The regression was thus in the following form: 
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where Ci,t specifies whether deck i was chosen at trial t, DI is directly experienced 
identity, DR is directly experienced reward, EI is evoked identity and ER is evoked 
reward for each trial preceding the current choice and also for the given deck i. 
Following the patterns observed in our previous study2, effects of memory and 
the identity of the previous deck are specified for the previous trial, while direct 
reward receipt is specified for the preceding three trials.

In total, there were eight columns in the design matrix—the seven predictor 
variables just described, plus the constant term—and 360 rows, one for each of 
the 120 test-phase choices, each specified three times coded for the three decks 
of interest. The resulting regression weights—indicating the degree to which 
the current choice was influenced by choices and rewards on a given evoked or 
directly experienced trial or context—were treated as random effects and tested 
against zero across the population by two-tailed t-test. See Table 1 for a concrete 
illustration of how the design matrix was constructed.

Reinstatement-scaled context reward. We also ran the regression analysis using 
a version of the context reward regressor that was augmented with neuroimag-
ing evidence for reinstatement of each specific scene context (for details on the 
neuroimaging evidence calculation, see “Specific-scene patterns” below).

In this analysis, the EC regressor (equation (2)) was recomputed six times  
at each choice following a memory probe, once for each of the context rooms, 
producing ECC,k. In other words, the regressor was computed as though the probe 
had reminded the participant of each room.

We next incorporated the scene-specific reinstatement measure into our 
regression. First, we turned the correlation values at each trial into a distribution 
of weights across the six possible contexts. We did this by adding 1 (to account 
for negative correlations) to the correlation values and then dividing the resulting 
values by the sum across all correlations. This resulted in a real number between 
0 and 1 indicating the relative degree of match between activity at probe and the 
template for each context.

The six context reward values, ECC,k, were each multiplied by our estimated 
probability that the participant was reinstating the given context Ck. The sum of 
the six probability-weighted context rewards was then entered into the regression 
in place of (or, in the second analysis, alongside) the original EC regressor.

Context-aware sampling model. To investigate how single-trial and context 
reward trade off with each other as the number of past episodes sampled increases, 
we simulated the task as performed by a context-aware episodic sampling model. 
In this simulation, all choices are made using episodic sampling alone (no influ-
ence of model-free values), to clearly isolate the influence of changing the number 
of samples. In episodic sampling, option values are estimated using the values 
encountered on one or more past episodes, with the likelihood of sampling a given 
episode diminishing exponentially with its recency. The context-aware episodic 

(2)(2)

(3)(3)

http://www.pni.princeton.edu/mvpa/


©
 2

01
7 

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t 

o
f 

S
p

ri
n

g
er

 N
at

u
re

. A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

nature NEUROSCIENCE doi:10.1038/nn.4573

sampling model augments this idea, by positing that additional samples after 
the first are (with some probability) selected uniformly from the same context 
as the preceding sample.

The model maintains a cache of episodes representing each experienced trial. 
When subjects respond correctly to a valid memory probes, the model ‘reinstates’ 
with some probability the episode by copying the reminded trial to the front of 
the cache, thus making it more likely to be drawn when evaluating options during 
the next choice. If the subject’s correct response to the memory probe is of high 
confidence, then the context of the probed trial is included in the episode copied 
to the front of the cache.

We used this model to simulate subjects who used different numbers of sam-
ples from episodic memory to make decisions. The model had four parameters  
that were fixed across all simulations: αdirect, or the decay rate on temporal 
recency; αevoked, or the probability of reinstating evoked trials because of memory 
probes; β, the softmax temperature; βp, the choice perseveration term; and π, the 
likelihood of drawing sample k from the same context as sample k − 1 (as opposed 
to based on temporal recency).

A final parameter, the number of samples drawn, was varied between 1 and 
15. For each fixed number of samples, we simulated 1,600 subjects (50 groups  
of 32) each performing an instantiation of the task. The simulated subject’s 
parameters αdirect, β and βp, were set to those fit to the real subjects with the 
number of samples equal to 1, and π was set to 1.

For simplicity, in the first simulation αevoked was set to 1. This assumption was 
relaxed for our second set of simulations, during which we varied αevoked between 
0 and 1 to illustrate the impact of changing this parameter. The simulated subjects 
were programmed to make, on average, the same proportion of low confidence 
and incorrect responses as did the subjects from experiments 1 and 2.

Incremental learning models. To compare our context reward model to the oth-
ers, we generated the time series of reinstated context reward values that would 
be learned according to three different specifications of model-free RL.

The first variant followed the traditional method, learning the value of each 
card deck without regard to changes in room context. Specifically, at each step, the 
value for the chosen card deck, QB, was updated according to the reward received 
on that trial, Rt, and the learning rate α: 

Q Q R QB B t B= + −a( ) ( )4

We refer to this as the standard model.
The second variant reset the value of each card deck when the room changed, 

giving separate values QB,C for each room-context, following equation (5): 

Q Q R QB C B C t B C, , ,( ) ( )= + −a 5

We refer to this as the room-reset model.
A third variant also reset action values, but this time it did so at a variable trial 

number within each room (for example, 1, 2, 3 or more trials after room change). 
We designed this model to account for the possibility that participants took note 
of payoff reversals and discounted information before the switch19. We refer to 
this model as the reversal model.

The three incremental learning models were fit to choices in rooms one 
through six, using maximum likelihood estimation of parameters. To compare 
the model likelihoods, we first transformed them using the Bayesian information 
criterion (BIC)20 which penalized the third model for its additional parameter.

The best-fitting model was used to generate a replacement for the context-
reward regressor as specified in “Regression analysis.” The resulting regression 
model weights were compared to the original (Fig. 2).

Imaging analysis. To identify neural markers of context reinstatement, we first 
defined, using MVPA21, the pattern of BOLD activity in posterior parahippoc-
ampal cortex that indicated participants were processing scene images. We then 
looked for evidence that this pattern was reinstated following probe trials. We 
reasoned that greater evidence of scene reinstatement would indicate that partici-
pants were recalling the context of the probed image (note that no scene images 
were present during phase 2) and thus would show an increased influence of other 
trials from this context on their decision-making.

ROI definition. We identified a region of interest consisting of voxels that 
(across the group) showed preferential activation to scene images, using the 

(4)(4)

(5)(5)

following procedure. First, for each participant, we performed a general linear 
model (GLM) analysis of the localizer phase data and identified voxels selec-
tively responding to scenes versus other categories (univariate contrast, scenes 
> scrambled scenes|objects). For each participant, we selected clusters in the 
posterior parahippocampal region (matching the reported parahippocampal 
place area (PPA)22) that were significant at P < 0.005, uncorrected. Next each 
per-participant voxel mask was binarized; all above-threshold voxels were set 
to 1. This mask was warped to match the group average anatomical so that each 
participant’s mask could be aligned and the collection averaged. The resulting 
group-space masks were added together and the summed image thresholded to 
include all voxels present in more than 90% of participants. This final group ROI 
was then warped back to the individual participant space and the result used as 
a mask for pattern classifier analyses.

To permit various control analyses, we followed a parallel procedure to iden-
tify a region of interest that preferentially responded to the scrambled scenes 
used in our localizer task. For this ROI, rather than selecting clusters within an 
anatomical area of interest, we simply used the contrast mask from across the 
entire brain.

Category-level pattern classification. We trained a classifier to identify pat-
terns of activity indicative of participants processing pictures of scenes. We first 
extracted, across the localizer task, activity of all of the voxels in the above-defined 
scene-responsive ROI. These labeled data were used to train an L2-regularized 
multinomial logistic regression classifier to predict scene versus scrambled scene 
labels. The regularization parameter was set to 0.1, but the results were insensitive 
to varying this parameter by several orders of magnitude in either direction.

The trained classifier was then applied to activity after each probe trial. For 
each TR of interest, at each probe trial, the classifier provided a measure of the 
probability that participants were processing scenes; we refer to this real-valued 
number as scene evidence. We first selected as TRs of interest those time points 
after each probe that reflected peak selectivity to scenes. Because no scenes were 
on the screen during or after the probes, we treated elevated scene evidence as 
indicating that participants were recollecting contextual information (background 
scenes) from phase 1. We compared scene evidence in different conditions and at 
different time points using paired-sample t-tests; all tests were two-tailed.

Our final analysis involves splitting probe trials into four bins by the amount 
of classifier evidence for scenes on our selected time points of interest. These 
bins may have different variance within them, which could potentially confound 
the subsequent regression analysis we perform using these evidence quantities. 
Therefore, to evaluate the relative contribution of classifier evidence in different 
quartiles to explaining the context reward effect, we report standardized regres-
sion coefficients (Schroeder et al.23; equation (6)) that scale the regression weights 
by the relative variance of the evidence time series in quartile i as a proportion of 
the variance of the context reward in that quartile: 

STD
SD evidence
SD ctxrwdctxrwd ctxrwdb b= × ( )

( )
( )i

i
6

Specific-scene patterns. We evaluated whether memory probes caused par-
ticipants to reinstate the specific context, rather than just a general measure of 
scene reinstatement, and whether measurements of the contexts that were actually 
reinstated could improve our predictions of behavior. For each participant, and 
for each context room, we produced a template pattern of PPA activity in that 
room by averaging activity in each PPA voxel across all 30 choice trials. We then 
computed, at each probe trial that evoked a past decision, the average pattern in 
PPA across our time points of interest (Fig. 3b). Next we computed the Fisher-
transformed correlations between these trial patterns and each template. These 
values were then entered into the multiple regression analysis, as described in 
“Reinstatement-scaled context reward” above.

Statistics. A within-subject design was used. Thus, experimental group rand-
omization or blinding was not applicable. To examine the effect of recent and 
reminded rewards on choices, and parameters across model fits, we performed a 
multiple regression separately for each subject and tested the resulting population 
of β weights against zero, using one-sample t-tests. We compared β weights within 
experiments using paired two-sample t-tests. We used unpaired, two-sample  
t-tests to compare β weights across experiments. All t-tests were two-tailed, 
except for the localizer contrast, which used the standard SPM one-sample tests.  
Data distribution was assumed to be normal, but this was not formally tested 

(6)(6)
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before analysis. No statistical methods were used to predetermine sample sizes. 
Sample size (20) in experiment 1 was based on a previous experiment using a 
similar task2. For experiment 2, sample size (32) was based on our current stand-
ard lab practice for fMRI sample stopping criterion, as well as referenced to the 
sample size (14) in a previous fMRI study performed in our lab that also used 
classifier evidence of scenes as a signature of context reinstatement7, which here 
was more than doubled to account for the finer degree of distinction required 
for these analyses. Incremental learning models were compared on the basis of 
their likelihoods (summed log choice probabilities), using BIC20 to penalize the 
third model for its additional parameter.

Data and code availability. The data that support the findings of this study are 
available on reasonable request from the corresponding author. The data are 
not publicly available because they contain information that could compromise 
research participant privacy and consent. In the near future, they will be deidenti-
fied at the level of contemporary best practices and placed in a public repository, 
which will be linked to at the below GitHub URL. Standard software packages 
(SPM8 and FSL 5.0.4) were used for preprocessing the MRI data, in addition to 

custom Matlab scripts. Custom-written analysis code is available upon reason-
able request to the corresponding author. Context-aware sampling model code is 
publicly available at the corresponding author’s GitHub repository (https://github.
com/aaronbneuro/neurocode/).
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