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Abstract

An unpredictable early life environment can have enduring
effects on mental health outcomes in adulthood. Despite
widespread evidence for this relationship, it remains unclear
what core mechanism links the two. Here we propose that
early life unpredictability (ELU) shapes the development of
temporal sequence representations. Critically, we show that
this in turn produces impairments in reward sensitivity and
learning, phenotypes that have been associated with anhedo-
nia, a transdiagnostic symptom often observed in individuals
with ELU. We formalize this hypothesis using a principled
model of interval timing whose representations adjust with ex-
perience to support adaptive temporal predictions. The core
observation is that initial unpredictability in timing produces
broader, more imprecise temporal expectations. As a result,
reward anticipation and learning are diminished. When we
introduced agents with broader expectations into a stable en-
vironment, they showed a greater response to the omission of
reward relative to its presence. This bias accords with negative
attentional and mnemonic biases associated with anhedonia.
In sum, we show that a single mechanism can explain a range
of behaviors associated with anhedonia, offering insights into
the role of temporal representations in reward learning and in
the emergence of phenotypes linked to psychiatric disorders.
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Introduction
Across development, brain circuits adapt to meet the demands
of the environment. Concretely, sensory receptive fields are
tuned to reflect the statistics of the early life environment,
determining perceptual discrimination abilities in adulthood.
Consistency is crucial to this maturation process. For func-
tional circuits to form, the input statistics must be consis-
tent (Li, Fitzpatrick, & White, 2006). It has recently been
proposed that similar processes may occur in reinforcement
and memory systems critically involved in associative learn-
ing (Birnie et al., 2020). This implies that the consistency
or predictability of associations encountered early in life may
shape the acquisition of associations later on.

Interactions with caregivers are one contributor to the as-
sociative statistics an infant encounters. For example, the
infant behaves in some way and, normatively, the caregiver
produces a consistent response to this behavior such that the
infant can anticipate the response in the future. The timing
between behavior and response is encoded and can be repre-
sented using a set of temporal receptive fields (TRFs) similar
to receptive fields found in sensory areas. Instead of being

tuned to visual angle or auditory pitch, these TRFs are sen-
sitive to the time between associated stimuli and its consis-
tency.

Caregivers vary in the valence and predictability of their
responses. Most prior work has focused on the effect of va-
lence on later child mental health outcomes. However, recent
work has begun to examine how early life unpredictability, or
ELU, might also contribute (Baram et al., 2012). Caregiver
signals, if unpredictable, can result in anhedonia-like behav-
iors such as reduced experience of pleasure and motivation
(Bolton et al., 2018). Importantly, anhedonia is a transdiag-
nostic symptom associated with several psychiatric disorders
previously shown to be related to ELU (Glynn et al., 2019).

In the current work, we propose that TRFs are tuned to the
unpredictability of timing in the environment, and these adap-
tations produce an anhedonic phenotype. We extend a princi-
pled computational model of interval timing (Ludvig, Sutton,
& Kehoe, 2008) to examine how enhanced volatility during
an early period of plasticity can, with minimal assumptions,
affect later predictions of reward during maturity, when adap-
tation no longer occurs. With this model, we formally demon-
strate that early unpredictability in timing and adaptation of
temporal receptive fields to this timing can lead to an array of
anhedonia-like symptoms. This includes an asymmetric re-
sponse to reinforcement and omission despite no differences
in the overall amount of reinforcement. This reproduces em-
pirical findings that poor mental health outcomes can emerge
from unpredictability in early life experience beyond what
would be predicted from the overall number of adverse events
(Glynn et al., 2019).

Methods
The Temporal-Difference model
Temporal-Difference (TD) models aim to accurately estimate
the value of states in the world, V , in terms of the future re-
wards they predict. Time is explicitly represented in these
models with a separate V for each time step, t, in a trial.

V ∗ = E[
∞

∑
k=1

γ
k−1rt+k] (1)

where rt is the reward received at the current time step, and
γ controls how heavily future rewards are discounted. Future
rewards are less influential on V when γ is low. A TD agent



Figure 1: Two groups of agents, early life unpredictability (ELU) and control, learned to associate a cue and reward across two
environments. The cue was partially reinforced in both environments — 75% of the time in the first and 50% in the second.
During the first phase, both groups adapted their temporal receptive fields to the statistics of reward timing. The timing of
reward delivery varied from trial to trial, differently for each group: The ELU group’s timing was sampled from a much wider
distribution relative to the controls. However, during the second phase, both groups received rewards at the exact same time on
every reinforced trials.

learns V by an error driven learning rule. The estimate of
V at the next time step is updated using the difference, δt ,
between the reward that was predicted (Vt−1) and what was
actually received (rt + γVt ).

δt = rt + γVt −Vt−1 (2)

The Microstimulus model
All TD models explicitly represent time, but do so in vari-
ous ways. Basic TD models use a complete-serial-compound
(CSC) representation in which each time step is treated as in-
dependent from one another. The agent is assumed to have
perfect knowledge of the time between cue and reward. This
representation prohibits temporal generalization, creating is-
sues in environments where the time between cue and reward
varies. The microstimulus representation addresses this prob-
lem by relaxing its temporal markers (Ludvig et al., 2008).
CSC’s discrete markers are replaced with less precise micros-
timuli that allow for uncertainty to be represented. A stimu-
lus, whether it be a neutral, rewarding, or aversive is assumed
to leave behind a memory trace that decays with time. The
trace is represented by a basis set of overlapping temporal re-
ceptive fields — Gaussian distributions whose standard devia-
tions increase with the time after onset of the initial stimulus.

f (y,µ,σ) =
1√
2π

e(−
(y−µ)2

2σ2 ) (3)

A time step’s value, Vt , is estimated as the weighted aver-
age of the microstimuli.

Vt = wT
t xt =

n

∑
i=1

wt(i)xt(i) (4)

This value is compared to the reward received. The er-
ror term, δt , adjusts the weights on the microstimuli, conse-
quently updating the predicted value at the next time step.

wt+1 = wt +αδtet (5)

α is the learning rate controlling the time window over
which trial to trial experiences are integrated. et is a vector
containing each stimulus’s eligibility traces.

et = γλet + xt (6)

Following the stimulus, its eligibility trace decays at a rate
determined by γ and λ. γ is a discounting factor as above
while λ controls the time window over which a stimulus can
induce learning within a trial. For all simulations, we use the
parameter settings from Ludvig et al, 2008 — α = 0.01, γ =
0.98, λ = 0.95, n = 50, and σ = 0.08.

Simulating development
To model developmental changes in learning, we limit the
period over which microstimuli weights can adapt to expe-
rience. We treat this as a critical period during which the
temporal receptive fields are tuned to support accurate esti-
mation of V . This adaptation process is designed to mimic the
observed tuning of sensory receptive fields during analogous
sensitive periods of development (Simoncelli & Olshausen,
2001).

We simulated two groups of agents learning cue-reward
pairings across two phases (Figure 1). One group of agents,
the early life unpredictability or ELU group, experienced a
volatile environment in the first phase. Specifically, the de-
lay between cue and reward considerably varied from trial to
trial. The other group of agents, the control group, experi-
enced relatively much less variation.

On each of the 1000 simulated trials, a cue was always
presented at 100 milliseconds and there was a 75% proba-
bility of a reward following it. If a cue was reinforced on a
trial, the timing of reward delivery was sampled from a nor-
mal distribution with µ set to 300 milliseconds for all agents
while σ varied. For the ELU group, σ was sampled from
a zero-truncated normal distribution with µhyper,elu = 10 and
σhyper,elu = 3 . The control group experienced much less tem-
poral variability with σ being sampled from a zero-truncated
normal distribution with µhyper,control = 1, σhyper,control = 2.

In the second phase, the weights could no longer adapt to
the new environment. Thus, this phase was post the critical
period. Both groups encountered another 1000 trials of learn-
ing to pair the same cue to a reward. On each trial, there was
now a 50% probability of reward being presented following



Figure 2: A. Temporal receptive field (TRF) imprecision was computed by taking a weighted average of the standard deviations
of the temporal receptive fields following the critical period phase. The ELU group showed greater average temporal receptive
field imprecision, a consequence of their more volatile experience during the critical period. B. Both groups’ positively weighted
temporal receptive fields. Recapitulating the results shown in panel A, the ELU group relied on more broadly tuned, less precise
temporal receptive fields relative to the control group.

the cue. As before, the cue arrived at 100 ms. Reward tim-
ing was more stable in this environment with reward always
arriving at 500 ms.

Here we focus on anhedonia, variously defined as the in-
ability to experience and/or anticipate pleasure, as a symp-
tom associated with many disorders observed to result fol-
lowing ELU. Following previous work, we model anhedo-
nia as a reduced sensitivity to rewards and an impaired abil-
ity to learn from reinforcement (Huys, Pizzagalli, Bogdan, &
Dayan, 2013). We asked if the simulated agents could exhibit
these features of anhedonia from variability in reward timing
alone, despite outcome valence being equated across groups.

Results
Critical Period
First, we examined how the initial environment shaped the
tuning of temporal receptive fields by comparing the groups’
microstimuli weights following the critical period. For each
agent, we computed a temporal precision measure by tak-
ing a weighted average of the microstimuli’s standard de-
viations. We found that the ELU group relied on more
broadly-tuned receptive fields relative to the controls (Figure
2; t(198)=−7.83, p < .0001).

Prior work has demonstrated that early life unpredictability
impedes learning from reinforcement (Birn, Roeber, & Pol-
lak, 2017; Dillon et al., 2009). Thus, we examined whether
the model could capture this. As a proxy for learning, we use
prediction error magnitude. The more an agent has learned
to associate a cue and a reward, the smaller their prediction
error will be when a cue is reinforced with reward and the
greater their prediction error will be when reward is omitted.
To compare prediction errors between groups, we computed
the median prediction error extremum for each agent. On re-
inforced trials, the maximum prediction error magnitude fol-
lowing the cue was taken while on omission trials, we took
the minimum. We found that the ELU group demonstrated
more extreme prediction errors relative to controls on rein-
forced trials (Figure 3, 4, t(198) = 15.15, p < .0001) but less
extreme on omission trials (t(198) = 6.09, p < .0001). These

results are consistent with the ELU group showing weaker
learning under reinforcement. Critically, this is despite expe-
riencing the same amount of reward on average as the control
group (t(198)= 0.67, p = 0.51). This suggests that impaired
reward learning, as observed in anhedonia, can emerge from
experienced temporal volatility alone during a period of plas-
ticity.

Early life unpredictability has also been shown to impair
motivation (Hanson, Williams, Bangasser, & Peña, 2021).
This may stem from a reduced expectation of reward. Thus,
we compared the groups’ expectation of value across time
following the cue. The ELU group’s value signal peaked
early following the cue (mean = 156 ms; sd = 27) and slowly
decayed, not reaching its minimum for several 100s of mil-
liseconds following the cue (mean = 500 ms; sd = 1.4). This
suggests if the reward is not received immediately, ELU indi-
viduals gradually grow less confident it will come at all. Con-
versely, the control group’s signal peaked much later (mean
= 265; sd = 19; t(198) = 32.66, p < .0001) but reached its
minimum much sooner near the average reward time (Figure
5 mean = 373; sd = 89; t(198)=−15.45, p < .0001). In other
words, control individuals increasingly anticipate the reward
as its expected arrival time approaches.

Post Critical Period
During the second phase, the reward timing was consistent
for both groups and the weights were no longer allowed to
adapt. Under these conditions, the ELU group showed less
extreme positive prediction errors relative to controls (Figure
6, t(198) = −14.57, p < .0001) but more extreme negative
prediction errors (t(198) = −8.13, p < .0001), the opposite
pattern as observed during the critical period.

To ensure our simulated agents’ bias did not emerge from
aggregating over the data, we computed an asymmetry index
for each agent:

index =
PE+−PE−
PE++PE−

(7)

We found that the the ELU group had asymmetry indices
that were in aggregate negative (t(199) = −2.87, p = .005)



Figure 3: Critical period results - prediction error. Prediction error, δ, across time on trials where the cue was reinforced versus
when it was omitted. For the ELU group, the timing of the large prediction error following the cue varies from trial to trial as a
result of the reward timing varying. In contrast, the control group consistently experience a large prediction error near 300 ms.

Figure 4: Critical period results - median prediction error ex-
tremum. For each trial, the extreme points of the prediction
error was taken following the cue. For each agent, the mea-
sure was computed by taking the median over the trials’ ex-
tremums. The ELU group showed larger predictions errors
on trials where the cue was reinforced but weaker prediction
errors when reward was omitted following the cue. Stars in-
dicate significance of the test reported in the main text as fol-
lows: * p < .05, ** p < .01, *** p < .001.

Figure 5: Critical period results - value. V , at each time step
averaged across trials. The ELU group’s value decreased fol-
lowing the cue while the control group’s increased. Once the
typical reward time was reached, the ELUs’ value signal con-
tinued to steadily drop while the controls’ did so quickly.



Figure 6: Post critical period results. A. Prediction errors at each time step for reinforced and omitted trials. On trials where
the cue was reinforced, the control group showed larger and earlier cue-related and reward-related prediction errors relative to
the ELU. On trials where reward was omitted, again, the control group showed larger and earlier cue-related prediction errors.
However, for the reward-related prediction errors, the ELU groups’ were larger. B.Asymmetry index. The ELU group displayed
more extreme prediction errors on omission trials relative to reinforced while the control group showed the opposite pattern.

while the control group’s were positive (t(199) = 7.00, p <
.0001).

Discussion
Here, we’ve proposed a novel computational link between
early life unpredictability and the emergence of anhedonia
— the optimization of temporal representations to the early
life environment. We assume that the volatility of the early
life environment adaptively tunes temporal receptive fields in
such a way that several behaviors associated with anhedo-
nia — impaired learning from reinforcement reduced antic-
ipation of reward, and a greater response to the omission of
events — emerge.

These findings are consistent with behavioral outcomes ob-
served in the laboratory and clinical settings. One representa-
tive such set of findings is of an asymmetric attentional bias
in anhedonia. If we assume that attention increases with pre-
diction error magnitude, then the ELU group were attention-
ally biased toward the omission outcome over the reinforced.
Additionally, if we treat the omission of reward as a nega-
tively valenced event and the presence of reward as positive,
this suggests a negative attentional bias in the ELU group and
positive bias in the controls, reproducing empirical findings
(Dillon & Pizzagalli, 2018; Frank, 2004). Larger negative
prediction errors may not only affect attention in the moment
but also shape mood over the longer term (Eldar, Rutledge,
Dolan, & Niv, 2016). Recurring negative prediction errors
may give rise to the persistent negative mood that character-
izes anhedonia (Dillon et al., 2009).

In the current work, we’ve interpreted the results while
treating the outcome paired with the cue as a reward. How-
ever, the model is agnostic to whether the associated stimuli
are neutral, rewarding, or aversive. Different outcome va-
lences suggest different behavioral phenotypes. If the out-
come is aversive, like a shock, rather than a reward, the ELU
group’s prolonged expectation of an outcome’s appearance
could produce a sort of “paranoia”. The agent generalizes
their expectation of the aversive event over a longer time pe-

riod, producing a continual state of nervousness that aligns
with symptoms of anxiety. If the outcome is neutral, impair-
ments in reward learning become more general impairments
in relational learning. This may explain memory deficits
and alterations in hippocampal structure in ELU individuals
(Granger et al., 2021; Molet et al., 2016) and its relationship
with anhedonia. Prior work has suggested that anhedonia is
characterized not only by the inability to experience pleasure
in the moment but also the inability to recall past and an-
ticipate future pleasurable experiences (Dillon & Pizzagalli,
2018).

Here we’ve only considered the mechanism under Pavlo-
vian learning conditions. However, it suggests differences
in ELU individuals’ instrumental learning and action selec-
tion. The inability to accurately predict the timing of future
outcomes diminishes an individual’s perceived controllability
of the environment, which has been implicated in psychiatric
disorders such as anxiety (Bishop & Gagne, 2018).

Hidden-state inference models capture a similar idea as
the microstimulus model at a different level of analysis
(Starkweather, Babayan, Uchida, & Gershman, 2017). Often,
the true state of the world is unknown or hidden and must be
inferred from observations. This inference process is in part
driven by prediction errors (Rouhani, Norman, Niv, & Born-
stein, 2020), and by extension is more difficult in volatile en-
vironments. As a result, ELU individuals may infer fewer
states in the world (or, analogously, more states in an envi-
ronment where negative prediction errors predominate) and
group their experiences accordingly as a result of this early
volatility. We have previously shown that this assumption of
reduced sensitivity with a hidden-state inference model can
produce reduced exploration in a foraging task (N. C. Harhen
& Bornstein, 2021), a behavior found in ELU populations
(Lloyd, McKay, & Furl, 2022) , and may also explain why
individuals who experience early life unpredictability are at
higher risk of developing substance use disorders and relaps-
ing following treatment (N. Harhen, Baram, Yassa, & Born-
stein, 2021).



Our results highlight the key role time plays in shaping re-
inforcement learning and consequently its impact on behav-
iors associated with mental illness. The varied phenotypes
that emerge from the same computations is consistent with
the idea that the mechanism identified here has implications
that extend beyond anhedonia. It suggests a common origin
for a number of psychiatric disorders, potentially explaining
their high co-morbidity rates. Further empirical research is
needed to test the model’s behavioral implications for early
life unpredictability’s impact on interval timing, and interval
timing’s relationship with psychiatric disorders.
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