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Abstract
Patch foraging presents a sequential decision-making problem widely studied
across organisms — stay with a current option or leave it in search of a better
alternative? Behavioral ecology has identified an optimal strategy for these
decisions, but, across species, foragers systematically deviate from it, staying
too long with an option or “overharvesting”, relative to this optimum. Despite
the ubiquity of this behavior, the mechanism underlying it remains unclear.
Here, we address this gap, by approaching foraging as both a decision-making
and learning problem. Specifically, we propose a model in which foragers 1)
rationally infer the structure their environment and 2) use their uncertainty
over the inferred structure representation to adaptively discount future rewards.
We find that overharvesting can emerge from this rational statistical inference
and uncertainty adaptation process. In a patch leaving task, we show that
human participants adapt their foraging to the richness and dynamics of the
environment in ways consistent with our model. These findings suggest that
definitions of optimal foraging could be extended by considering how foragers
reduce and adapt to uncertainty over representations of their environment.

Introduction
Many real world decisions are sequential in nature. Rather than selecting from a
set of known options, a decision-maker must choose between accepting a current
option or rejecting it for a potentially better future alternative. Such decisions
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arise in a variety of contexts including choosing an apartment to rent, a job to
accept, or a website to browse. In ethology, these decisions are known as patch
leaving problems. Optimal foraging theory suggests that the current option
should be compared to the quality of the overall environment. An agent using
the optimal choice rule given by Marginal Value Theorem (MVT1) will leave
once the local reward rate of the current patch, or concentration of resources,
drops below the global reward rate of the environment.

Foragers largely abide by the qualitative predictions of MVT, but deviate
quantitatively in systematic ways - staying longer in a patch relative to MVT’s
prescription. Known as overharvesting, this bias to overstay is widely observed
across organisms. Despite this, how and why it occurs remains unclear. Proposed
mechanisms include a sensitivity to sunk costs2,3, diminishing marginal utility4,
discounting of future rewards3–5, and underestimation of post-reward delays6.
Critically, these all share MVT’s assumption that the forager has accurate
and complete knowledge of their environment, implying that deviations from
MVT optimality emerge in spite of this knowledge. However, an assumption of
accurate and complete knowledge often fails to be met in dynamic real world
environments7. Relaxing this assumption, how might foragers learn the quality
of the local and global environment?

Previously proposed learning rules include recency-weighted averaging over
all previous experiences4,8 and Bayesian updating9. In this prior work, learning
of environment quality is foregrounded while knowledge of environment structure
is assumed. In a homogeneous environment, as is nearly universally employed
in these experiments, this is a reasonable assumption as a single experience in a
patch can be broadly generalized from across other patches. However, it may be
less reasonable in more naturalistic heterogeneous environments with regional
variation in richness. To make accurate predictions within a local patch, the
forager must learn the heterogeneous structure of the broader environment.
How might they rationally do so?

In standard economic choice tasks, humans have been shown to act in
accordance with rational statistical inference of environment structure. Fur-
thermore, by assuming humans must learn the structure of their environment
from experience, seemingly suboptimal behaviors can be rationalizing including
prolonged exploration10, melioration11, and overgeneralization12. By building
on this proposal and extending it to a foraging context, we suggest that over-
harvesting, another seemingly suboptimal behavior, could be a byproduct of a
rational agent inferring the latent structure of their environment and, critically,
adapting their decision computations to the qualities of this inferred structure.

We formalize this suggestion using an infinite capacity mixture model13,14
and test its predictions with a novel variant of a serial stay-switch task (Fig. 1A;
Constantino and Daw 4 , Decker et al. 15). Participants visited different planets
to mine for “space treasure” and were tasked to collect as much space treasure as
possible over the course of a fixed length game. On each trial, they had to decide
between staying on the current planet to dig from a depleting treasure mine or
traveling to a new planet with a replenished mine at the cost of a time delay. To
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mimic naturalistic environments, we varied planet richness across the broader
environment while locally correlating richness in time. More concretely, planet
richness was drawn from a multimodal distribution (Fig. 1B) and transitions
between planets of a similar richness were more likely (Fig. 1C). Our model
predicted distinct behavioral patterns from structure learning individuals versus
their non-structure learning counterparts in our task. Specifically, within the
multimodal environment, non-structure learners are predicted to underharvest
on average, while structure learners overharvest. Furthermore, structure learners’
extent of overharvesting are predicted to vary across the task — decreasing
with experience and increasing following rare transitions between planets. In
contrast, non-structure learners should consistently underharvest.

We found that principled inference of environment structure and adaptation
to this structure can produce key deviations from MVT that have been widely
observed in participant data across species. Taken together, these results
reinterpret overharvesting: Rather than reflecting irrational choice under a
fixed representation of the environment, it can be seen as rational choice under
a dynamic representation.

Methods

Fig. 1 A. Serial stay-switch task. Participants traveled to different planets and mined
for space gems across 5 6-minute blocks. On each trial, they had to decide between staying
to dig from a depleting gem mine or incurring a time cost to travel to a new planet. B.
Environment structure. Planets varied in their richness or, more specifically, the rate
at which they exponentially decayed with each dig. There were three planet types — poor,
neutral, and rich — each with their own characteristic distribution over decay rates. C.
Environment dynamics. Planets of a similar type clustered together. A new planet had
an 80% probability of being the same type as the prior planet ("no switch"). However, there
was a 20% probability of transitioning or "switching" to a planet of a different type.
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Participants
We recruited 176 participants from Amazon Mechanical Turk (111 male, ages
23-64, Mean=39.79, SD=10.56). Participation was restricted to workers who
had completed at least 100 prior studies and had at least a 99% approval rate.
Participants earned $6 as a base payment and could earn a bonus contingent
on performance ($0-$4). We excluded 60 participants according to one or more
of three criteria: 1. having average planet residence times 2 standard deviations
above or below the group mean (36 participants) 2. failing a quiz on the
task instructions more than 2 times (33 participants) or 3. failing to respond
appropriately to one or more of the two catch trials (17 participants). On catch
trials, participants were asked to press the letter "Z" on their keyboard. These
questions were meant to "catch" any participants repeatedly choosing the same
option (using key presses "A" or "L") independent of value.

Task Design
Participants completed a serial stay-switch task adapted from previous human
foraging studies4,16. With the goal of collecting as much space treasure as
possible, participants traveled to different planets to mine for gems. Upon
arrival to a new planet, they performed an initial dig and received an amount
of gems sampled from a Gaussian distribution with a mean of 100 and standard
deviation (SD) of 5. Following this initial dig, participants had to decide between
staying on the current planet to dig again or leaving to travel to a new planet
(Fig 1A). Staying would further deplete the gem mine while leaving yielded
a replenished gem mine at the cost of a longer time delay. They made these
decisions in a series of five blocks, each with a fixed length of 6 minutes. Blocks
were separated by a break of participant-controlled length, up to a maximum
of 1 minute.

On each trial, participants had 2 seconds to decide via key press whether
to stay ("A") or leave ("L"). If they decided to stay, they experienced a short
delay before the gem amount was displayed (1.5 s). The length of the delay
was determined by the time the participant spent making their previous choice
(2 - RT s). This ensured participants could not affect the environment reward
rate via their response time. If they decided to leave, they encountered a longer
time delay (10 s) after which they arrived on a new planet and were greeted by
a new alien (5 s). On trials where a decision was not made within the allotted
time (2 s), participants were shown a timeout message for two seconds.

Unlike previous variants of this task, planets varied in their richness within
and across blocks, introducing greater structure to the task environment.
Richness was determined by the rate at which the gem amount exponentially
decayed with each successive dig (Fig. 1B). If a planet was “poor”, there was
steep depletion in the amount of gems received. Specifically, its decay rates
were sampled from a beta distribution with a low mean (mean = 0.2; sd = 0.05;
α = 13 and β = 51). In contrast, rich planets depleted more slowly (mean =
0.8; sd = 0.05; α = 50 and β = 12). Finally, the quality of the third planet type

4



— neutral — fell in between rich and poor (mean = 0.5; sd = 0.05; α = 50 and
β = 50). The environment dynamics were designed such that planet richness
was correlated in time. When traveling to a new planet, there was an 80%
probability of it being the same type as the prior planet ("no switch"). If not
of the same type, it was equally likely to be of one of the remaining two types
("switch", Fig. 1C). This information was not communicated to participants,
requiring them to infer the environment’s structure and dynamics from rewards
received alone.

Comparison to Marginal Value Theorem
Participants’ planet residence times, or PRTs, were compared to those prescribed
by MVT. Under MVT, agents are generally assumed to act as though they
have accurate and complete knowledge of the environment. For this task, that
would include knowing each planet type’s unique decay rate distribution and
the total reward received and time elapsed across the environment.

Knowledge of the decay rate distributions is critical for estimating Vstay,
the anticipated reward if the agent were to stay and dig again.

Vstay = rt ∗ d (1)
where rt is the reward received on the last dig and d is the upcoming decay.

d =


0.2 if planet is poor
0.5 if planet is neutral
0.8 if planet is rich

Vleave is estimated using the total reward accumulated, rtotal, total time
passed in the environment, ttotal, and the time delay to reward associated with
staying and digging, tdig.

Vleave =
rtotal
ttotal

∗ tdig (2)
rtotal

ttotal
estimates the average reward rate of the environment. Multiplying

it by tdig gives the opportunity cost of the time spent exploiting the current
planet.

Finally, to make a decision, the MVT agent compares the two values and
acts greedily, always taking the higher valued option.

choice = argmax(Vstay, Vleave) (3)

Model

Making the stay-leave decisions

We assume that the forager compares the value for staying, Vstay, to the value
of leaving Vleave, to make their decision. Similar to MVT, we assume foragers
act greedily with respect to these values.

5



Learning the structure of the environment

Fig. 2 Structure learning improves prediction accuracy. A. With structure
learning A simulated agent’s posterior probability over the upcoming decay rate on each
planet is plotted. If the forager’s prior allows for the possibility of multiple clusters (α > 0),
they learn with experience the cluster-unique decay rates. Initially, the forager is highly
uncertain of their predictions. However, with more visitations to different planets, the agent
makes increasingly accurate and precise predictions. B. Without structure learning If the
forager’s prior assumes a single cluster (α = 0), the forager makes inaccurate and imprecise
predictions - either over or underestimating the upcoming decay, depending on the planet
type. This inaccuracy persists even with experience because of the strong initial assumption.

Learning the structure of the environment affords more accurate and precise
predictions which support better decision-making. Here, the forager predicts
how many gems they’ll receive if they stay and dig again and this determines
the value of staying, Vstay. To generate this prediction, a forager could aggre-
gate over all past experiences in the environment4. This may be reasonable in
homogeneous environments but less so in heterogeneous ones where it could
introduce substantial noise and uncertainty. Instead, in these varied environ-
ments, it may be more reasonable to cluster patches based on similarity and
only generalize from patches belonging to the same cluster as the current one.
This selectivity enables more precise predictions of future outcomes.

Clusters are latent constructs. Thus, it is not clear how many clusters a
forager should divide past encounters into. Non-parametric Bayesian methods
provide a potential solution to this problem. They allow for the complexity of
the representation — as measured by the number of clusters — to grow freely
as experience accumulates. These methods have been previously used to explain
phenomena in category learning13,17, task set learning12, fear conditioning14,
and event segmentation18.

To initiate this clustering process, the forager must assume a model of
how their observations, decay rates, are generated by the environment. The
generative model we ascribe to the forager is as follows. Each planet belongs to
some cluster, and each cluster is defined by a unique decay rate distribution:

dk ∼ Normal(µk, σk) (4)
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where k denotes cluster number. The generative model takes the form of a
mixture model in which normal distributions are mixed together according to
some distribution P (k) and observations are generated from sampling from the
distribution P (d|k).

Before experiencing any decay on a planet, the forager has prior expectations
regarding the likelihood of a planet belonging to a certain cluster. We assume
that the prior on clustering corresponds to a “Chinese restaurant process” 19. If
previous planets are clustered according to p1:N , then for the current planet:

P (k) =

{
nk

N+α if k is old
α

N+α if k is new

Where nk is the number of planets assigned to cluster k, α is a clustering
parameter, and N is the total number of planets encountered. The probability
of a planet belonging to an old cluster is proportional to the number of planets
already assigned to it. The probability of it belonging to a new cluster is
proportional to α. Thus, α controls how dispersed the clusters are — the higher
α is the more new cluster creation is encouraged. The ability to incrementally
add clusters as experience warrants it makes the generative model an infinite
capacity mixture model.

After observing successive depletions on a planet, the forager computes the
posterior probability of a planet belonging to a cluster:

P (k|D) =
P (D|k)P (k)∑J
j=1 P (D|j)P (j)

(5)

Where J is the number of clusters created up until the current planet, D is a
vector of all the depletions observed on the current planet, and all probabilities
are conditioned on prior cluster assignments of planets, p1:N .

Exact computation of this posterior is computationally demanding as it
requires tracking all possible clusterings of planets and the likelihood of the
observations given those clusterings. Thus, we approximate the posterior distri-
bution using a particle filter20. Each particle maintains a hypothetical clustering
of planets which are weighted by the likelihood of the data under the particle’s
chosen clustering. All simulations and fitting were done with 1 particle which
is equivalent to Anderson’s local MAP algorithm21.

With 1 particle, we assign a planet definitively to a cluster. This posterior
then determines (a) which cluster’s parameters are updated and (b) the inferred
cluster on subsequent planet encounters.

If the planet is assigned to an old cluster, k, the existing µk and σk are
updated analytically using the standard equations for computing the posterior
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for a normal distribution with unknown mean and variance:

d̄ =
1

n

n∑
i=1

di

µ′
0 =

n0µ0 + nd̄

n0 + n

n′
0 = n0 + n

ν′0 = ν0 + n

ν′0σ
2
0
′
= ν0σ

2
0 +

n∑
i=1

(di − d̄)2 +
n0n

n0 + n
(µ0 − d̄)2

(6)

where d is a decay observed on the current planet, n is the total number of
decays observed on the current planet, n0 is the total number of decays observed
across the environment before the current planet, µ0 is the prior mean of the
cluster-specific decay rate distribution and ν0 is its precision. µ

′

0 and ν
′

0 are
the posterior mean and variance respectively.

If the planet is a assigned to a new cluster, then a new cluster is initialized
with the following distribution:

dnew ∼ Normal(0.5, 0.25) (7)
This initial distribution is updated with the depletions encountered on the

current planet upon leaving.
The goal of this learning and inference process is to support accurate

prediction. To generate a prediction of the next decay, the forager samples
a cluster according to P (k) or P (k|D) depending on whether any depletions
have been observed on the current planet. Then, a decay rate is sampled from
the cluster specific distribution, dk. The forager averages over these samples to
produce the final prediction.

To demonstrate structure learning’s utility for prediction, we show in
simulation the predicted decay rates on each planet with structure learning
(Fig. 2A) and without (Fig. 2B). With structure learning, the forager’s pre-
dictions approach the mean decay rates of the true generative distributions.
Without structure learning, however, the forager is persistently inaccurate,
underestimating the decay rate on rich planets and overestimating it on poor
planets.

Adapting the model of the environment

Because the inference process is an approximation and foragers’ experience is
limited, their inferred environment structure may be inaccurate. Theoretical
work has suggested that a rational way to compensate for this inaccuracy is
to discount future values in proportion to the agent’s uncertainty over their
representation of the environment22. We quantified an agent’s uncertainty by
taking the entropy of the approximated posterior distribution over clusters (Fig
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Fig. 3 Uncertainty adaptive discounting. A. High uncertainty When clusters are
similarly probable, the posterior entropy is high. This entropy is taken as the forager’s internal
uncertainty and is used to adjust their discounting rate, γeffective. When uncertainty is
high, they discount future value more heavily. B. Low uncertainty When one cluster is
much more likely than the others, entropy or uncertainty is low and consequently, future
value is discounted less heavily.

3). We sample clusters 100 times proportional to the posterior. These samples
are multinomially distributed. We represent them with the distribution, X:

X ∼ Multinomial(100,K) (8)
Where K is a vector containing the counts of clusters from sampling 100 times
from the distribution, P (k) or P (k|d) depending on whether depletions on the
planet have been observed. Uncertainty is quantified as the Shannon entropy
of distribution X.

We implemented this proposal in our model by discounting the value of
leaving as follows:

Vleave =
rtotal
ttotal

∗ tdig ∗ γeffective (9)

γeffective =
1

1 + e(−γbase+γcoef∗H(X))
(10)

where γbase and γcoef are free parameters and H(X) is the entropy of the
distribution X.

Model fitting

We compared participant PRTs on each planet to those predicted by the model.
A model’s best fitting parameters were those that minimized the difference
between the true participant’s and simulated agent’s PRTs. We considered
1000 possible sets of parameters generated by quasi-random search using low-
discrepancy Sobol sequences23. Prior work has demonstrated random and
quasi-random search to be more efficient than grid search24 for parameter
optimization. Quasi-random search is particularly efficient with low-discrepancy
sequence, more evenly covering the parameter space relative to true random
search.

Because cluster assignment is a stochastic process, the predicted PRTs vary
slightly with each simulation. Thus, for each candidate parameter setting, we
simulated the model 50 times and averaged over the mean squared error (MSE)
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between participant PRTs and model-predicted PRTs for each planet. The
parameter configuration that produced the lowest MSE on average was chosen
as the best fitting for the individual.

Model Comparison

We compared three models: the structure learning and adaptive discounting
model described above, a temporal difference model previously applied in a
foraging context, and a MVT model that learns the mean decay rate and global
reward rate of the environment.

MVT-Learning In this model, the agent learns a threshold for leaving
which is determined by the global reward rate, ρ4. ρ is learned with a simple
delta rule with α as a learning rate and taking into account the temporal
delay accompanying an action τ . The value of staying is d ∗ ri where d is the
predicted decay and ri is the reward received on the last time step. The value
of leaving,Vleave, is the opportunity cost of the time spent digging, ρ ∗ tdig. The
agent chooses an action using a softmax policy with temperature parameter,
β which determines how precisely the agent represents the value difference
between the two options.

P (ai = dig) =
1

(1 + e(−c−β(d∗ri−ρ∗tdig)))

δi =
ri
τi

− ρi

ρi+1 = ρi + (1− (1− α)τi) ∗ δi

(11)

TD-Learning The temporal difference (TD) agent learns a state-specific
value of staying and digging, Q(s, dig) and a non-state specific value of leaving,
Q(leave). The state, s is defined by the gem amounts offered on each dig. The
state space is defined by binning the possible gems that could be earned from
each dig. The bins are spaced are according to log(bj+1) - log(bj) = log(k̄)
where bj+1 and bj are the upper and lower bounds of the bins and d̄ is the
mean decay rate. This state space specification is taken from4. We set bj+1 to
135 and bj to 0 as these were the true bounds on gems received per dig. We
set k̄ to 0.5 because this would be the mean decay rate if one were to average
the depletions experienced over all planets. The agent compares the two values
and makes their choice using a softmax policy.

P (ai = dig) =
1

(1 + e(−c−β(Qi(si,dig)−Qi(leave))))

Di ∼ Bernoulli(P (ai))

δi = ri + γτi(Di ∗Qi(si) + (1−Di) ∗Qi(leave))−Qi(si−1, ai−1)

Qi(si−1, ai−1) = Qi+1(si−1, ai−1) + α ∗ δi

(12)
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Fig. 4 Model-free results A. Planet richness influences over and underharvesting
behavior. Planet residence times (PRT) relative to Marginal Value Theorem’s (MVT)
prediction are plotted as the median (± one quartile) across participants. The grey line
indicates the median while the white cross indicates the mean. Individuals’ PRTs relative to
MVT are plotted as shaded circles. In aggregate, participants overharvested on poor and
neutral planets and acted MVT optimally on rich planets. B. Decision times are longer
following rare switch transitions. If a participant has knowledge of the environment’s
planet types and the transition structure between them, then they should be surprised
following a rare transition to a different type. Consequently, they should take longer to
decide following these transitions. As predicted, participants spent longer making a decision
following transitions to different types ("switch") relative to when there was transition to
a planet of the same type ("no switch"). This is consistent with having knowledge of the
environment’s structure and dynamics. C. Overharvesting increases following rare
switch transitions. On poor and neutral planets, participants overhavested to a greater
extent following a rare "switch" transition relative to when there was a "no switch" transition.
This is consistent with uncertainty adaptive discounting. Switches to different planet types
should be points of greater uncertainty. This greater uncertainty produces heavier discounting
and in turn staying longer with the current option.*p < 0.05, **p < 0.01, ***p < 0.001

where c, α, β, γ are free parameters. c is a perseveration term, α is the
learning rate, β is the softmax temperature, and γ is the temporal discounting
factor.

Cross Validation Each model’s fit to the data was evaluated using a 10-fold
cross validation procedure. For each participant, we shuffled their PRTs on
all visited planets and split them into 10 separate training/test datasets. The
best fitting parameters were those that minimized the sum of squared error
(SSE) between the participant’s PRT and the model’s predicted PRT on each
planet in the training set. Then, with the held out test dataset, the model was
simulated with the best fitting parameters and the SSE was calculated between
the participant’s true PRT and the model’s PRT. To compute the model’s final
cross validation score, we summed over the test SSE from each fold.

Results

Model-free analyses

Participants adapt to local richness

We first examined a prediction of MVT — foragers should adjust their patch
leaving to the richness of the local patch. In the task environment, planets
varied in their richness or how quickly they depleted. Slower depletion causes
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the local reward rate to more slowly approach the global reward rate of the
environment. Thus, MVT predicts that stay times should increase as depletion
rates slow. As predicted, participants stayed longer on rich planets relative
to neutral (t(115) = 19.77, p < .0001) and longer on neutral relative to poor
(t(115) = 12.57, p < .0001).

Experience decreases overharvesting

Despite modulating stay times in the direction prescribed by MVT, participants
stayed longer or overharvested relative to MVT when averaging across all
planets (t(115) = 3.88, p = .00018). However, the degree of overharvesting
diminished with experience. Participants overharvested more in the first two
blocks relative to the final two (t(115) = 3.27, p = .0014). Our definition
of MVT assumes perfect knowledge of the environment. Thus, participants
approaching the MVT optimum with experience is consistent with learning the
environment’s structure and dynamics.

Local richness modulates overharvesting

We next considered how participants’ overharvesting varied with planet type.
As a group, participants overharvested only on poor and neutral planets while
behaving MVT optimally on rich planets (Fig. 4A; poor - t(115) = 6.92,
p < .0001; neutral - t(115) = 9.00, p < .0001; rich - t(115) = 1.38, p = .17).

Environment dynamics modulates decision time and
overharvesting

We also asked how participants adapted their foraging strategy to the environ-
ment’s dynamics or transition structure. Upon leaving a planet, it was more
common to transition to a planet of the same type (80%, "no switch") than
transition to a planet of a different type ("switch"). Thus, we reasoned that
switch transitions should be points of maximal surprise and uncertainty given
their rareness. However, this would only be the case if the participant could
discriminate between planet types and learned the transition structure between
them.

If surprised, a participant should take longer to make a choice following
a rare "switch" transition. So, we next examined participants’ reaction times
(z-scored and log-transformed) for the decision following the first depletion on a
planet. We compared when there was a switch in planet type versus where there
was none. As predicted, participants showed longer decision times following a
"switch" transition suggesting they were sensitive to the environment’s structure
and dynamics (Fig. 4B; t(115) = 2.65, p = 0.0093).

If uncertain, our adaptive discounting model predicts that participants
should discount remote rewards more heavily and, consequently, overharvest
to a greater extent. To test this, we compared participants overharvesting
following rare "switch" transitions to their overharvesting following the more
common "no switch" transitions. Following the model’s prediction, participants
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marginally overharvested more following a change in planet type (t(115) = 1.86,
p = 0.065). When considering only planets that participants overharvested on
on average (poor and neutral), overharvesting was significantly greater following
a change (Fig. 4C; t(115) = 4.67, p < .0001).

Computational modeling

Fig. 5 Modeling results A. The adaptive discounting model predicts overharvest-
ing. Averaging across all planets, only the adaptive discounting model predicts overharvesting
while the temporal-difference learning model predicts MVT optimal behavior and the MVT
learning model predicts underharvesting. This demonstrates that overharvesting, a seemingly
suboptimal behavior, can emerge from principled statistical inference and adaptation. B.
Model predictions diverge most on rich planets. Similar to participants, the greatest
differences in behavior between the models occurred on rich planets. C. The adaptive
discounting model provides the best account for participant choices. The adaptive
discounting model had the lowest mean cross validation score indicating it provided the best
account of participant choice at the group level.

Structure learning with adaptive discounting provide the best
account of participant choice

To check the models’ goodness of fit, we asked whether the compared models
could capture key behavioral results found in participants’ data. For each
model and participant, we simulated an agent with the best fitting parameters
estimated for them under the given model. Only the adaptive discounting
model was able to account for overharvesting when averaging across all planets
(Fig. 5A, t(115) = 9.03, p < .0001). The temporal-difference learning model
predicted MVT optimal choices on average (t(115) = 1.09, p = .28) while the
MVT learning model predicted underharvesting (t(115) = -7.17, p < .0001).
These differences were primarily driven by predicted behavior on the rich
planets (Fig. 5B).
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Model fit was also assessed at a more granular level (stay times on individual
planets) using 10-fold cross validation. Comparing cross validation scores as a
group, participants’ choices were best captured by the adaptive discounting
model (Fig. 5C; mean cross validation scores — adaptive discounting: 16.55,
TD: 22.47, MVT learn: 32.31). At the individual level, 64% of participants were
best fit by the adaptive discounting model, 14% by TD, and 22% by MVT learn.

Adaptive discounting model parameter distribution

Because the adaptive discounting model provided the best account of choice
for most participants, we examined the distribution of individuals’ best fitting
parameters for the model. Specifically, we compared participants’ estimated
parameters to two thresholds. These thresholds were used to identify whether a
participant 1) inferred and assigned planets to multiple clusters and 2) adjusted
their overharvesting in response to internal uncertainty.

The threshold for multi-cluster inference, 0.8, was computed by simulating
the adaptive discounting model 100 times and finding the lowest value that
produced multi-cluster inference in 90% of simulations. 76% of participants
were above this threshold. Thus, most participants were determined to be
“structure learners” using our criteria.

The threshold for uncertainty-adaptive discounting was assumed to be 0. A
majority of participants, 93%, were above this threshold. These participants
were determined to be “adaptive discounters”, those who dynamically modulated
their discounting factor in accordance with their internal uncertainty.

We next looked for relationships between parameters. Uncertainty should
be greatest for individuals who have prior expectations that do not match the
environment’s true structure, whether too complex or too simple. Consistent
with this, there was a non-monotonic relationship between the structure learning
and discounting parameters. γbase and γcoef were greatest when α was near its
lower bound, 0, and upper bound, 10 (γbase: β = 0.080, p < .0001; γcoef : β =
0.021, p < .0001). An individual’s base level discounting constrains the range
over which uncertainty can adapt the effective discounting. Reflecting this, the
two discounting parameters were positively related to one another (τ = -0.33,
p < .0001).

Parameter validation

Correlations with model-free measures of task behavior confirmed the validity
of the model’s parameters. We interpret α as reflecting an individual’s prior
expectation of environment complexity. α must reach a certain threshold to
produce inference of multiple clusters and consequently, sensitivity to the
transitions between clusters. Validating this interpretation, participants with
higher fit α demonstrated greater switch costs between planet types (Kendall’s
τ = 0.24, p = 0.00076). Moreover, this relationship was specific to α. γbase
and γcoef were not significantly correlated with switch cost behavior (γbase:
τ = -0.036, p = .57; γcoef : τ = -0.10, p = 0.11). This is a particularly strong
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Fig. 6 Parameter distributions A. Participants learned the structure of the
environment. Distribution of participants’ priors over environment complexity, α. Each
individual’s parameter is shown relative to a baseline threshold, 0.8. This threshold is the
lowest value that produced multi-cluster inference in simulation. Most participants (76%) fall
above this threshold indicating a majority learned the environment’s multi-cluster structure.
B. Environment complexity parameters were positively related to reaction time
sensitivity to transition frequency. An individual must infer multiple planet types to
be sensitive to the transition structure between them. In terms of the model, this would
correspond to having a sufficiently high environment complexity parameter. Validating this
parameter, it was positively correlated with individual’s modulation of reaction time following
a rare transition to a different planet type. C. Participants adapted their discounting
computations to their uncertainty over environment structure. Distribution of
participant’s uncertainty adaptation parameter, γcoef . Each individual’s parameter is shown
relative to a baseline of 0. A majority were above this threshold (93%) indicating most
participants dynamically adjusted their discounting, increasing it when they experienced
greater internal uncertainty. D. Uncertainty adaptation parameters were positively
related to overharvesting sensitivity to transition frequency. If an individual increases
their discounting to their internal uncertainty over environment structure, then they should
discount more heavily following rare transitions and stay longer with the current option.
Consistent with this, we found that the extent an individual increased their overharvesting
following a rare transition was related to their uncertainty adaptation parameter.

validation as the model was not fit to reaction time data. Validating γcoef
as reflecting uncertainty-adaptive discounting, the parameter was correlated
with the extent overharvesting increased following a rare transition or "switch"
between different planet types (τ = 0.15, p = 0.016). This was not correlated
with α nor the baseline discounting factor γbase (α: τ = -0.011, p = .86; γbase:
τ = 0.082, p = .20).
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Discussion
While Marginal Value Theorem (MVT) provides an optimal solution to patch
leaving problems, organisms systematically deviate from it, staying too long or
overharvesting. A critical assumption of MVT is that the forager has accurate
and complete knowledge of the environment. Yet, this is often not the case
in real world contexts — the ones in which foraging behaviors are likely to
have adapted25. We propose a model of how foragers could rationally learn
the structure of their environment and adapt their foraging decisions to it. In
simulation, we demonstrate how seemingly irrational overharvesting can emerge
as a byproduct of a rational dynamic learning process. In a heterogeneous,
multimodal environment, we compared how well our structure learning model
predicted participants’ choices relative to two other models — one implementing
a MVT choice rule with a fixed representation of the environment and the
other a standard temporal-difference learning algorithm. Importantly, only
our structure learning model predicted overharvesting in this environment.
Participants’ choices were most consistent with learning a representation of the
environment’s structure through individual patch experiences. They leveraged
this structured representation to inform their strategy in multiple ways. One
way determined the value of staying. The representation was used to predict
future rewards from choosing to stay in a local patch. The other modulated
the value of leaving. Uncertainty over the accuracy of the representation was
used to set the discount factor over future value. These results suggest that to
explain foraging as it occurs under naturalistic conditions optimal foraging may
need to provide an account of how the forager learns to acquire accurate and
complete knowledge of the environment, and how they adjust their strategy as
their representation is refined with experience.

If foragers are learning a model of the environment and using it to make
decisions for reward, then this suggests that they may be doing something
like model-based reinforcement learning (RL). Seemingly contrary to this,
Constantino and Daw 4 found human foragers’ choices to be better explained by
a MVT model augmented with a learning rule than a standard reinforcement
learning model. However, it is important to note that the task environment in
that study was homogeneous and the RL model tested was model-free (temporal-
difference learning). Thus, the difference in our results could be due to different
task environments and class of models. A key way our model deviates from
a model-based RL approach is that prospective prediction is only applied in
computing the value of staying while the value of leaving is similar to MVT’s
threshold for leaving – albeit discounted proportionally to the agent’s internal
uncertainty over their representation’s accuracy. In the former respect, our
model parallels the one proposed by Kolling and Akam 26 to explain humans
sensitivity to the gradient of reward rate change during foraging observed by
Wittmann et al. 27 . Given that computing the optimal exit threshold under a
pure model-based strategy would be highly computationally expensive, Kolling
and Akam 26 ’s model pairs model-based patch evaluation with a model-free,
MVT-like exit threshold. Specifically, under this model, the agent leaves once
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the local patch’s average predicted reward rate over n time steps in the future
falls below the global reward rate. Both our model and Kolling and Akam 26 ’s
model demonstrate the potential role of representation learning and planning
over these representations in explaining foraging behavior.

In standard economic choice, prior work has demonstrated that individ-
uals’ behavior can be rationalized by considering their potential uncertainty
over environment structure and how they attempt to resolve it. For instance,
deviations from the optimal balance of exploration and exploitation can be
rationalized by considering that individuals must explore both at the level of
actions and at the level of hypotheses over environment structure and dynam-
ics10. These hypotheses could include the probability of reward produced by an
action changing over time or the probability of reward being correlated across
actions. Assuming one of these hypotheses will have implications for how widely
new information should be generalized across time and actions. This reveals
how a representation of the environment supports efficient learning, allowing
large gains in knowledge from sparse experience. However, information can
sometimes be generalized too broadly. Learners may inappropriately transfer
information from an old environment to a novel one if they overestimate the
shared structure between the environments28. Importantly, humans are able to
improve their ability to transfer information appropriately ("meta-learning").
While occasionally costly, structure representations more often than not facil-
itate robust learning particularly when coupled with meta-learning abilities,
allowing information to be spread between options both within and across envi-
ronments. The underweighting of a choice’s delayed outcomes has also been
rationalized by considering a decision-maker’s uncertainty over environment
structure, or more specifically, the relationship between actions and their long-
term consequences11. By assuming that this relationship must be learned, a
preference for lesser, local gains over greater, later gains becomes reasonable.
Here, the desire to learn the consequences of an action over multiple time scales
reveals the utility of structure representations in goal-directed planning29–31.
By considering the seemingly suboptimal patterns of choice introduced by
structure learning, we gain insight into the motivations for structure learning
itself. Amongst them are efficient learning of generalizable knowledge and the
ability to learn and leverage long-term dependencies.

While structure learning is beneficial, it is also challenging and computa-
tionally costly. With limited experience and computational noise, an inaccurate
model of the environment may be inferred. An inaccurate model, however, can
be counteracted by adapting certain computations. For example, lowering the
temporal discounting factor acts as a form of regularization or variance reduc-
tion22,32–35. Empirical work has found humans appear to do something like this
in standard intertemporal choice tasks. Gershman and Bhui 36 found evidence
that individuals rationally set their temporal discounting as a function of the
imprecision or uncertainty of their internal representations. Here, we found
that humans while foraging act similarly, overharvesting to a greater extent at
points of peak uncertainty. While temporal discounting has been proposed as a
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mechanism of overharvesting previously3–5, the discounting factor is usually
treated as a fixed, subject-level parameter, inferred from choice. Thus, it pro-
vides no mechanism for how the factor is set let alone dynamically adjusted
with experience. In contrast, our model proposes a mechanism through which
the discounting factor is rationally set in response to both the external and
internal environment.

The costs and benefits of inferring a structure representation and storing it
in memory is determined by qualities of the environment. Foraging strategies
leveraging mental maps of previous reward locations are particularly useful
in heterogeneous but predictable environments37–39. This characterizes the
environments that humans typically forage in — we have a tendency to rely
on high-value but costly to obtain and widely-dispersed resources. A reliance
on these resources could have pressured us, whether over a developmental or
evolutionary timescale, towards a predisposition to seek out structure. This idea
has been explored in non-human animals. Animals whose food resources are
patchily and widely distributed tend to rely on memory-based foraging strategies
and have greater spatial memory ability than animals whose resources are more
homogenously distributed. For instance, dolphins dive to varying depths to
collect their prey40. Constrained by their to need to surface to breathe, dolphins
appear to recall prey distributions at different depths and plan their foraging
dives accordingly41. Primates memory ability and use also appears to adapt
in response to the environment. Rosati 42 found that chimpanzees, who feed
on more variably and patchily distributed fruit, demonstrated greater spatial
memory ability than bonobos, who rely on more homogeneously distributed
terrestrial herbs. Furthermore, spider monkeys and baboons appear to rely on
detailed mental maps of prior reward sites that guide their trajectories through
forest habitats43,44. Potentially, careful analysis of the statistics and structure
of naturalistic environments may explain how and why humans adjust their
use of structure representations across different decision contexts and may
rationalize apparent suboptimalities.

By assuming complete and accurate knowledge of the environment, MVT
has limited explanatory reach in most naturalistic environments. Optimal
foraging theory has provided behavioral rules for how key decision variables
could be learned and optimally used assuming a fixed representation of the
environment45,46. However, it remains unclear how decision-making should
adapt to dynamic representations. Different assumptions lead to different
definitions of optimality. Thus, relaxing a key assumption of MVT suggests
optimal foraging theory must be expanded. Potentially, its applicability could
be broadened by considering decision rules that are flexible enough to support
representational change.
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