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Abstract

Adverse early life experiences can have remarkably enduring negative consequences on mental
health, with numerous, varied psychiatric conditions sharing this developmental origin. Yet, the mech-
anisms linking adverse experiences to these conditions remain poorly understood. Here, we draw on
a principled model of interval timing to propose that statistically optimal adaptation of temporal rep-
resentations to an unpredictable early life environment can produce key characteristics of anhedonia,
a transdiagnostic symptom associated with affective disorders like depression and anxiety. The core
observation is that early temporal unpredictability produces broader, more imprecise temporal expec-
tations. As a result, reward anticipation is diminished, and associative learning is slowed. When agents
with such representations are later introduced to more stable environments, they demonstrate a nega-
tivity bias, responding more to the omission of reward than its receipt. Increased encoding of negative
events has been proposed to contribute to disorders with anhedonia as a symptom. We then examined
how unpredictability interacts with another form of adversity, low reward availability. We found that
unpredictability’s effect was most strongly felt in richer environments, potentially leading to categori-
cally different phenotypic expressions. In sum, our formalization suggests a single mechanism can help
to link early life adversity to a range of behaviors associated with anhedonia, and offers novel insights
into the interactive impacts of multiple adversities.
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1. Introduction

Across development, brain circuits adapt to reflect the environment’s structure, preferen-
tially encoding more frequent aspects of the world. The statistics of the early life environment
tune sensory receptive fields, producing nonhomogeneous sensitivity to perceptual stimuli and
determining discrimination abilities in adulthood (Efrati & Gutfreund, 2011; Tanaka, Ribot,
Imamura, & Tani, 2006). Early consistency in these sensory inputs is crucial for the future
functionality of involved circuits (Li, Fitzpatrick, & White, 2006). Similar developmental
processes may take place in reward and memory systems, those underlying associative learn-
ing, implying that the consistency or predictability of associations in early life may shape the
acquisition of associations later on (Birnie et al., 2020).

Caregivers are primary contributors to the associative structure infants encounter. Associ-
ations may take the form of a caregiver’s response to an action the infant preforms. These
responses may vary in their valence and predictability. Valence influences whether the infant
will repeat the action preceding the response, while predictability constrains the infant’s learn-
ing to associate the two. Prior work has largely focused on the effect of valence on later child
mental health outcomes (Belsky & Fearon, 2002; Hane, Henderson, Reeb-Sutherland, & Fox,
2010; NICHD Early Care Research Network, 2006; Sroufe, 2005). However, recent work
has highlighted how early life unpredictability, or ELU, may also contribute (Baram et al.,
2012). Research done in animals has illustrated that offspring exposed to unpredictable care-
giver signals show a reduction in motivation and the experience of pleasure, characteristics
of the trans-diagnostic symptom, anhedonia (Bolton et al., 2018). Work in humans accords
with these findings, showing the relationships between experiences of ELU, reduced reward
anticipation, and symptom severity in anhedonia, depression, and anxiety (Dillon et al., 2009;
Goff et al., 2013; Hanson et al., 2016; Mehta et al., 2010; Spadoni et al., 2022).

Here, we propose that the study of ELU can be understood in part via its influence on the
development of temporal representations (TRs) that serve as basis sets for associative learning
more generally (Howard et al., 2014; Jin, Fujii, & Graybiel, 2009). TRs capture the intuition
that the strength of learned associations is dependent on the time between events (Balsam,
Drew, & Gallistel, 2010). These tuning curves are similar to those found in sensory areas, but
rather than being tuned to visual angle or auditory pitch, are sensitive to the temporal duration
between related events.

We specifically examine how ELU can, via its influence on the adaptation of temporal rep-
resentations, result in an anhedonic phenotype. We extend a principled computational model
of interval timing (Ludvig, Sutton, & Kehoe, 2008) to simulate how enhanced volatility during
an early period of heightened plasticity can, with minimal assumptions, affect later predic-
tions of reward during maturity. With this model, we formally demonstrate that early unpre-
dictability in timing, and adaptation of temporal representations to this timing, can lead to the
development of several defining characteristics of anhedonia—including slowed associative
learning, reduced motivation, and a bias toward learning from negative events—in the absence
of differences in the overall amount of reward. Our results reproduce empirical findings that
unpredictability in early life experience can heighten susceptibility to poor mental health

 17568765, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tops.12701 by Princeton U

niversity L
ibrary, W

iley O
nline L

ibrary on [12/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



N. C. Harhen, A. M. Bornstein / Topics in Cognitive Science 00 (2023) 3

outcomes even after controlling for the childhood environment’s overall resource availability
(Glynn et al., 2019).

While we show that a singular type of adversity can alone produce an anhedonic phenotype,
in the real world, individuals are often subject to multiple adversities. Modeling the nature of
these interactions and their combined effect on learning will be critical for characterizing the
developmental trajectory of psychopathology. As a first step, we model how temporal unpre-
dictability interacts with the environment’s availability of reward, or richness, to shape later
learning and expectations of reward. Under the common cumulative risk approach to concep-
tualizing and measuring early life adversity (Felitti, 2002), these two adversities are assumed
to have an additive effect on development: individuals facing both are predicted to have the
most negative outcomes. Our model predicts that unpredictability always has a negative effect
on associative learning; however, contrary to the cumulative risk prediction, this effect is most
pronounced in richer environments. Both unpredictability and an abundance of rewards indi-
vidually alter TRs to be more expansive or diffuse, producing the observed interaction. Our
results highlight the potential value of computational psychiatric approaches to tackling the
heterogeneity of early life adversity and making sense of its developmental consequences.

2. Isolating the contributions of one form of adversity, unpredictability

2.1. Methods

During the initial phase (“critical period”), agents’ TRs were allowed to adapt to the envi-
ronment’s temporal statistics. Agents belonged to one of two groups, ELU or control. The
two groups were differentiated by the distributions their reward timings were sampled from,
with the ELU agents’ distribution having the same mean as the control agents’ but a higher
variance. In the second phase (“post critical period”), both groups received reward at the same
time step on each rewarded trial and, critically, agents’ TRs were not allowed to adapt to the
novel environment’s statistics.

2.1.1. The temporal-difference learning model
Temporal-difference (TD) models aim to accurately estimate the value of world states, V ,

in terms of the future rewards they predict. Time is explicitly represented in these models with
each time step identifying a world state.

V ∗ = E

[ ∞∑
k=1

γ k−1rt+k

]
(1)

where rt is the reward received at the current time step, and γ is a parameter controlling how
heavily future rewards are discounted. Future rewards are less influential on the estimation of
V when γ is low. A TD agent learns V via an error-driven learning rule—the difference, δt ,
between the reward received (rt + γVt ) and the previously predicted reward (Vt−1) is used to
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Fig. 1. Stimulus encoding by microstimuli. From left to right, the memory trace produced by a stimulus is approx-
imated with a set of temporal basis functions, whose centers vary such that they evenly cover the trace’s possible
heights. The decaying nature of the memory trace produces microstimuli that become shorter and wider the further
their center is to the stimulus onset. The microstimuli are weighted and averaged to estimate the future expected
reward following the stimulus. The weights can be adjusted with experience to support accurate predictions of
reward.

update the estimate of V at the next time step.

δt = rt + γVt − Vt−1 (2)

2.1.2. Microstimulus representation of time
All TD models explicitly represent time, but do so in various ways. Basic TD models use

a complete-serial-compound (CSC) representation in which each time step is treated as inde-
pendent from one another and agents are assumed to have perfect knowledge of when events
occur. This representation prohibits temporal generalization, creating issues in environments
where the time between cue and reward varies. The microstimulus representation addresses
this problem by relaxing its temporal markers (Ludvig et al., 2008). CSC’s discrete markers
are replaced with continuous “microstimuli” which allow for temporal uncertainty to be rep-
resented (Fig. 1). A stimulus is assumed to leave behind a memory trace that decays with time.
The trace is approximated by a set of Gaussian temporal basis functions uniformly distributed
across the heights of the memory trace. This approximation produces a set of microstimuli
increasing in their peak and width from the time of stimulus onset.

f (y, μ, σ ) = 1√
2π

e
(
− (y−μ)2

2σ2

)
(3)

A time step’s value, Vt , is estimated as the weighted average of the microstimuli.

Vt = wT
t xt =

n∑
i=1

wt (i)xt (i) (4)

Vt is compared to the reward received to compute an error term, δt that is used to adjust the
weights on the microstimuli. Adjusting the weights updates the predicted value at the next
time step.

wt+1 = wt + αδt et (5)
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Fig. 2. Simulated agents learned to associate a cue with reward in two different environments. The cue was partially
reinforced—75% of the time in the initial environment and 55% in the second. On rewarded trials, reward was
delivered at a variable time step. Agents belonged to one of two groups, differing in the variability they experienced
in the initial environment. The reward timings experienced by agents in the early life unpredictability (ELU)
group were on average the same as those experienced by the control group. However, in the initial phase (“critical
period”), they experienced more variably timed rewards trial to trial. In the second phase (“post critical period”),
agents’ weights were frozen, and all agents received reward at the same time step.

α is the learning rate controlling the time window over which experiences are integrated.
et is a vector containing each stimulus’s eligibility traces.

et = γ λet + xt (6)

Following the stimulus, its eligibility trace decays at a rate determined by γ and λ. γ is
a temporal discounting factor as it was for the TD model with a CSC representation, while
λ controls the time window over which a stimulus can induce learning within a trial. For all
simulations, we use the parameter settings from Ludvig et al. (2008)— α = 0.01, γ = 0.98,
λ = 0.95, n = 50, and σ = 0.08.

2.1.3. Simulating development
To model developmental changes in learning, we restrict the updating of microstimuli

weights to the initial period which we treat as a “critical period” during which the TRs are
tuned to support accurate estimation of V . This adaptation process is designed to mimic the
observed tuning of sensory receptive fields during analogous sensitive periods of develop-
ment (Simoncelli & Olshausen, 2001). During the second phase (“post critical period”), the
weights are frozen, prohibiting representation adaptation, to simulate adulthood.

We simulated two groups of agents learning to associate a cue with reward across the
two phases (Fig. 2). One group of agents, the ELU group experienced a volatile critical
period environment in which the timing of reward was much more variable than the timing
experienced by the control group. Critically, however, the average timing of reward and the
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6 N. C. Harhen, A. M. Bornstein / Topics in Cognitive Science 00 (2023)

average amount of reward received (i.e., same probability of reward on each trial) was
matched between groups.

On each of the 1000 simulated trials during the critical period, a cue was always presented
at 10 time steps and there was a 75% probability of a reward following it. If a cue was followed
by reward on a trial, the timing of reward was sampled from a normal distribution with μ = 30
and truncated at 10 and 70 time steps. σ varied between agents. For agents in the ELU group,
σ was sampled from a zero-truncated normal distribution with μhyper,elu = 10 and σhyper,elu =
3. The control group experienced much less variability, with σ being sampled from a zero-
truncated normal distribution with μhyper,control = 1, σhyper,control = 2. We varied σ within
groups to reflect the variation observed in real-life samples, particularly early life adversity
facing ones, and to ensure our results were robust to such variation.

In the second phase, the microstimuli weights were frozen (“post critical period”), allowing
us to directly examine the influence of highly variable early life experiences. The temporal
statistics of this environment differed from the critical period’s environment in two ways: (1)
The reward was delivered at the same time step each trial for both groups of agents. (2) This
time step was later (50 time steps) than the previous environment’s average time of reward
(30 time steps). By testing ELU agents’ learning in novel environments that are more stable
than the environment they “developed” in, we formalize the Mismatch Hypothesis of Early
Life Adversity and Depression (Schmidt, 2011). Under this hypothesis, depression and other
mental illnesses are proposed to be the byproduct of a mismatch between the developmental
environment to which neural systems are optimized for and the later adulthood environment.
We were particularly interested in characterizing how an agent’s early adaptation to unpre-
dictability would affect their response to uncertainty in adulthood. Within the simulated task,
uncertainty should rise once the mean time of reward has passed and reward has failed to
be delivered. This is because it becomes unclear whether the reward is delayed or is omitted
altogether on the trial. To produce this circumstance, we moved back the time step of reward
in the novel, post critical period environment to examine how the ELU and control groups
differ in their response to reward and its omission following a period uncertainty. All agents
completed two trials. On both trials, the cue arrived at 10 time steps. On one trial, reward fol-
lowed the cue at 50 time steps. On the other, reward was omitted. We simulated agents only
on two trials because the weights were no longer updated. Thus, the prediction error response
on every trial of the same time (rewarded vs. omitted) would be identical.

2.1.4. Statistical analyses
Each simulated agent encountered a different sequence of reward timings during the initial

critical period. Thus, a potential concern is that our results are largely driven by a subset of
simulated agents. To assess the reliability of the relationship between prediction error mag-
nitude and unpredictable experience, we performed a bootstrap analysis across agents within
a group (Bornstein et al., 2023; Kim, Lewis-Peacock, Norman, & Turk-Browne, 2014). For
each group, we sampled agents with replacement until we reached the total number of agents,
100. We then computed the test statistic for a two sample t-test with the selected groups. We
repeated this procedure 1000 times to obtain a distribution of test statistics across shuffled
permutations of the simulated groups. This resampling procedure provides a p-value that is
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Fig. 3. (A, B) Positively weighted microstimuli. With experience, the ELU group grew to more heavily weigh
delayed, imprecise microstimuli to account for the frequent delayed rewards. (C) Temporal Imprecision. We
computed a summary statistic of temporal representation (TR) imprecision by taking a weighted average of the
standard deviations of the positively weighted microstimuli at the end of the critical period. ELU agents’ temporal
representations were, on average, more than twice as imprecise as control agents.

the fraction of test statistic values with a different sign from the base effect size (the test
statistic for the original two groups). We also computed the Cohen’s d in order to evaluate the
size of the difference between simulated populations. By convention, effect sizes greater than
0.80 are considered “large”, and thus reliable (Cohen, 1992).

2.2. Results

2.2.1. Critical period
First, we validated that the critical period environment shaped TRs by comparing the

groups’ microstimuli weights at the end of the critical period. For each agent, we computed
a temporal imprecision measure by taking a weighted average of the microstimuli’s standard
deviations, with the weights being the same as those used to generate the value signal. Con-
sistent with our prediction that TRs would adapt to reflect the statistics of their environment,
we found that the ELU group relied on more broadly tuned TRs relative to controls (Fig. 3;
t (198) = 8.43, p < .001, Cohen’s d = 1.19).

ELU has been shown to produce slower learning from reward in adulthood (Birn, Roe-
ber, & Pollak, 2017; Dillon et al., 2009). We next examined the model’s ability to capture
this. As a proxy for learning, we used a particular pattern of prediction error responses.
If a cue has become associated with reward, then there should be large positive prediction
error in response to the cue, a smaller positive prediction error at the time of reward, and a
large negative prediction error when reward is omitted. To compare prediction errors between
groups, we computed, across time within each trial, the prediction error extremum for each
agent. On rewarded trials, the maximum prediction error magnitude following the cue was
taken and on omission trials, the minimum was taken. We then took the average of these
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Fig. 4. An example ELU and control agent’s prediction errors (δ) from individual trials within the critical period.
A cue always occurred at 10 time steps, while the reward’s timing varied from trial to trial. Temporal variability
was determined by which group an agent belonged to—an ELU agent experienced a much wider distribution of
reward times. Reward elicited a strong positive prediction error from both agents on the first trial. Even very early
on, the control agent demonstrated a positive prediction error in response to the cue, a weak positive prediction
error at the time of reward, and a strong negative prediction error when reward was omitted, matching the pattern
of responses expected for well-learned, consistent contingencies using this temporal-difference learning rule. This
pattern held throughout the 1000 trial critical period. In contrast, even very late into the critical period, the ELU
agent’s prediction errors continuously moved around in time and were larger in magnitude, a consequence of their
more volatile environment.

Fig. 5. Critical period prediction error signals. Reward elicited larger positive prediction errors in ELU agents,
while reward omission produced weaker negative prediction errors, a pattern of responses suggesting that ELU
agents were slower in learning from reward.

values across trials of the same type for each participant. We found that, on rewarded trials,
the ELU group’s positive prediction errors were larger than the control group’s (Figs. 4 and
5; t (198) = 12.59, p < .001, Cohen’s d = 1.78) but, were less negative on omission trials
(t (198) = 6.23, p < .001, Cohen’s d = 0.88). Despite both groups experiencing the same
amount of reward, the ELU group showed slower learning under reinforcement. Collectively,
these results demonstrate how impaired associative learning, as observed in anhedonia, can
emerge from experienced temporal volatility alone during a period of plasticity.

ELU has also been shown to impair motivation (Hanson, Williams, Bangasser, & Peña,
2021), potentially stemming from reduced expectations of reward. Thus, we next compared
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Fig. 6. The value signal, V , averaged over all critical period trials. Individual agents’ value signals are depicted by
the thin lines. The thicker lines depict the group averages. Control agents’ expectations of future reward quickly
rose following the cue and steadily increased until the average time of reward, after which their expectations
quickly dropped. ELU agents’ expectations of reward similarly rose in response to the cue but subsequently
decreased at a gradual rate rather than increasing. Notably, ELU agents had higher expectations of reward at later
time steps compared to controls—a consequence of having experienced more delayed rewards which required
relying on more diffuse, later peaking microstimuli. When aggregated across trials, ELU agents’ expectations
were more spread out. This is both because they relied on more diffuse microstimuli and because their value
signals fluctuated from trial to trial in response to variably timed rewards.

the groups’ expectations of future reward, as reflected by their value signals. When averaged
across trials, control agents’ value signals quickly increased in response to the cue (Fig. 6;
mean at 10 time steps = 0.43, sd = 0.022), gradually rose until the average time of reward
(mean at 26 time steps = 0.71, sd = 0.075) after which the signal rapidly dropped off (mean
at 32 time steps = 0.059, sd = 0.078). ELU agents’ value signals similarly rose in response
to the cue but peaked much earlier (t (198) = −27.75, p < .001, Cohen’s d = −3.92) and
fell more gradually (mean at 32 time steps = 0.29, sd = 0.045, t (198) = 26.34, p < .001,
Cohen’s d = 3.73). Importantly, ELU agents’ expectations of reward were diminished at the
time steps right before when reward as most likely (mean at 26 time steps = 0.48, sd = 0.048,
t (198) = −25.87, p < .001, Cohen’s d = −3.66). These differences could have a particu-
larly significant impact on decision-making which requires deciding not only which option
to take but also when to take it. Diminished expectations of reward should produce slower
decision times, a characteristic found in anhedonia (Dubal, Pierson, & Jouvent, 2000; Day
et al., 2015; Gollan, Pane, McCloskey, & Coccaro, 2008; White, Myerson, & Hale, 1997).
ELU agents also showed greater variability in their value signals from trial to trial as revealed
by taking the standard deviation of the time steps at which value signals peaked (ELU mean
= 10.49; Control mean = 1.50; p < .001, Cohen’s d = 3.39). This aligns with prior empiri-
cal work that found more variable ventral striatal activity following early life stress (Hanson
et al., 2016).

2.2.2. Post critical period
To simulate adulthood, in the second phase, we closed the “critical period” by preventing

the updating of the microstimuli weights in the novel environment. Thus, their expectations
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10 N. C. Harhen, A. M. Bornstein / Topics in Cognitive Science 00 (2023)

Fig. 7. (A) Representative agents’ value signals. The value signal, taken from the end of the critical period,
reflects the individual agent’s expectation of future reward following the cue. These expectations are “frozen”
and determine the agent’s response to reward and its omission. (B) Example prediction error signals for a single
rewarded trial. The ELU agent’s expectation of future reward only begins to rise at 40 time steps, whereas the
control agent’s rises immediately at 10 time steps in response to the cue. Accordingly, the ELU agent demonstrates
a weaker and delayed response to the cue. When reward is delivered at 50 time steps instead of its average previous
time, 30 time steps, the control agent shows a more positive prediction error than the ELU agent. Again, this is a
result of their expectations. The control agent does not expect the reward to arrive this late in the trial, and thus, is
surprised when it does. The ELU agent, having experienced more delayed rewards, is less surprised. (C) Example
prediction error signals for a single omission trial. The ELU agent’s greater expectation of reward at later time
steps also produces a larger negative prediction error when reward is omitted.

of reward are carried over and fixed once the developmental period ends. In this environ-
ment, reward was delivered at a later time step than the average time of reward during the
critical period. This induces an interval of uncertainty during which its unclear whether the
reward is delayed or omitted. We examined how the expectations acquired in an unpredictable
early life environment shape the prediction error response when this uncertainty is resolved.
Because ELU agents experienced rewards at more variable time steps, they grew to have a
higher expectation that reward could arrive at later time steps (Fig. 7A). This affects their
response to the cue and reward. Control agents have a strong positive prediction error imme-
diately after the cue is presented because they have learned well that the cue predicts reward
(Fig. 7B). ELU agents instead have a weaker and delayed response to the cue because of their
weaker association between the cue and reward. Control agents experience a slightly nega-
tive prediction error when reward is not delivered at the most expected time step (Fig. 7C).
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Fig. 8. Sensitivity to increasing rewards. We varied the magnitude of rewards delivered during the second phase. As
the magnitude of rewards increased, both groups showed larger positive prediction errors on rewarded trials. ELU
agents were more sensitive to changes in reward magnitude —their prediction errors increased to a great extent
in response to larger rewards. At the lowest reward magnitude, which was the magnitude experienced during the
critical period, the control group experienced larger positive prediction errors than the ELU. This pattern reversed
at larger magnitudes with ELU agents demonstrating hypersensitivity to rewards. Error bars are 95% bootstrapped
confidence intervals.

But, when reward ultimately arrives at a later time step, they show a large positive prediction
error, a consequence of their low expectations of reward this late in the trial. ELU agents
had relatively higher expectations of reward at the time step when reward was delivered,
thus they showed relatively blunted positive prediction errors (t (198) = −2.25, p < .001,
Cohen’s d = −0.32). The same expectations produced amplified negative predictions error
when reward was omitted (t (198) = −12.29, p < .001, Cohen’s d = −1.74). In other words,
their higher expectations allowed them to experience greater disappointment.

We next examined how ELU affected agents’ response to rewards of varying magnitudes.
When given a reward of the same magnitude as those received during the critical period, con-
trol agents responded with larger positive prediction errors (Fig. 8; βelu = −0.51, p < .001).
As the reward magnitude increases, diverging from those previously experienced, both groups
show increasingly large prediction errors (βmagnitude = 0.55, p < .001). The ELU agents do
so at a faster rate than control agents, demonstrating larger prediction errors than controls in
response to higher magnitude rewards (βelu∗magnitude = 0.43, p < .001). When coupled with
their blunted response to the cue, ELU agents appear to be hyposensitive to rewards in antic-
ipation but hypersensitive to them in consumption. This pattern has been observed in a mon-
etary incentive delay task designed to distinguish between reward anticipation and consump-
tion (Boecker et al., 2014). More generally, it concords with wide-spread findings that early
life adversity impairs cue-reward learning (Birn et al., 2017; Dennison et al., 2019; Dillon
et al., 2009; Stuart, Hinchcliffe, & Robinson, 2019) while increasing sensitivity to dopamine-
releasing drugs (Cruz, Quadros, Planeta, & Miczek, 2008; Kosten, Miserendino, & Kehoe,
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12 N. C. Harhen, A. M. Bornstein / Topics in Cognitive Science 00 (2023)

Fig. 9. Learning Asymmetry Indices. The ELU group showed a negativity bias, experiencing more extreme pre-
diction errors on the omission trial than the rewarded trial. In contrast, the control group demonstrated a positivity
bias, experiencing larger prediction errors on the rewarded trial. Error bars are 95% bootstrapped confidence
intervals.

2000; Kosten, Sanchez, Zhang, & Kehoe, 2004; Kosten, Zhang, & Kehoe, 2006; Paine et al.,
2021; Wakeford et al., 2019; Zhang, Sanchez, Kehoe, & Kosten, 2005).

Prediction error magnitude determines the extent to which an agent learns or updates their
expectations. Because valence asymmetries in learning have been proposed to be clinically
relevant (Pike & Robinson, 2022; Rouhani, Norman, Niv, & Bornstein, 2020; Rouhani & Niv,
2019), we next compared prediction error magnitude on the rewarded and omission trials to
probe for such asymmetries. We computed an asymmetry index for each agent as follows:

index = |PE+| − |PE−|
|PE+| + |PE−| (7)

ELU agents’ asymmetry indices were overall negative (Fig. 9; t (99) = −5.62, p < .001,
Cohen’s d = −0.79), while the control agents’ were positive (t (99) = 8.49, p < .001,
Cohen’s d = 1.20). Because prediction error magnitude enhances learning and memory, this
suggests that negative events would have an outsized influence on ELU agents, making their
value estimates overly pessimistic, while control agents’ are overly optimistic (Sharot, 2011).
Our model provides a mechanism through which both of these biases could emerge under
minimal assumptions.

3. Interactions between multiple forms of adversity

3.1. Methods

3.1.1. Critical period
To examine the interaction between multiple forms of early life adversity— temporal

unpredictability and low reward availability, we additionally manipulated the richness of the
critical period environment and observed its effect on both groups. This allowed us to test the
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N. C. Harhen, A. M. Bornstein / Topics in Cognitive Science 00 (2023) 13

assumptions of the cumulative risk conceptualization of early life adversity which assumes an
additive effect of adversities on developmental outcomes. We simulated groups of the ELU
and control agents in environments with 25% , 55% , 75% , and 95% probability of reward.
As in previous simulations, the time of reward delivery was sampled from a normal distribu-
tion with μ = 30 time steps and truncated at 10 and 70 time steps, and the distribution’s σ

differed between groups—ELU agents’ σ were sampled from a zero-truncated normal distri-
bution with μhyper,elu = 10 and σhyper,elu = 3 and controls’ were sampled from a zero-truncated
normal distribution with μhyper,control = 1, σhyper,control = 2.

3.1.2. Post critical period
In the novel environment during the second phase, the cue was presented at 10 time steps

on each trial. They experienced one rewarded and one omission trial. On the rewarded trial,
reward was delivered at 50 time steps. As before, we only include two trials because the
weights are no longer updated, thus, the response on each trial of the same type would be iden-
tical.

3.2. Results

3.2.1. Critical period
As before, we assume that the smaller positive prediction errors are in response to reward

and the larger negative prediction errors are in response to its omission then the more strongly
an agent has learned to associate a cue with reward. Under this assumption, both tempo-
ral unpredictability and low reward availability were found to slow associative learning.
On rewarded trials, positive prediction errors were larger for ELU agents and both groups’
prediction errors became weaker with environment richness (Fig. 10A; βelu = 0.057, p <

.001, βrich = −0.90, p < .001). On omission trials, negative prediction errors were stronger
for control agents and with increasing environment richness (Fig. 10B; βelu = −0.022, p =
.015, βrich = −0.98, p < .001). The two dimensions interacted, with the difference between
groups increasing as environment richness increased (βelu∗rich = 0.15, p < .001). In par-
ticular, the effects of unpredictability on learning were only observed in richer environ-
ments, with no main effect of group but an interaction effect between group and richness
(βelu = −0.015, p = .11, βelu∗rich = 0.093, p < .001). Taken together, our results reveal that
the effect of temporal unpredictability is most fully felt when reward is abundant, a con-
sequence of both dimensions increasing the imprecision of TRs (βelu = 1.04e − 05, p <

.0001, βrich = 1.47e − 05, p < .001, βelu∗rich = −1.91e − 07, p = .95). When rewards are
both unpredictably timed and abundant, it increases the range of timings an agent’s repre-
sentation must accommodate.

The value signal reveals a similar impact of the environment’s temporal unpredictabil-
ity and overall richness on learning. The value signal correspondingly increased as rich-
ness increased (Fig. 10C; βrich = 0.32, p < .001). Yet, only when the environment is suf-
ficiently rich can unpredictability exerts its blunting effect on the signal (βelu = 0.0041, p =
.52, βelu∗rich = 0.035, p < .001).
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14 N. C. Harhen, A. M. Bornstein / Topics in Cognitive Science 00 (2023)

Fig. 10. Varying critical period environment richness to examine the impact of multiple adversities. (A) Criti-
cal period prediction errors in response to reward. Positive prediction error magnitude was modulated by the
environment’s richness (probability of reward) and its temporal unpredictability (ELU vs. Control), with richness
attenuating magnitude and unpredictability amplifying it. (B) Critical period prediction errors in response to
reward omission. Negative prediction error magnitude was amplified by richness and attenuated by unpredictabil-
ity. This pattern of responding suggests that richness supports associative learning, while unpredictability impairs
it. (C) Value Signal. Mirroring the reward statistics of their environment, agents’ expectation of future reward
increased accordingly with the overall richness of the environments. Notably, group differences were emphasized
by richness. (D) Post critical period asymmetry indices. Control agents demonstrated a consistent positivity bias
that diminished the richer the environment. ELU agents showed a positivity bias only in the poorest environment
and a negativity bias in richer environments. Error bars are 95% bootstrapped confidence intervals.

3.2.2. Post critical period
In the post critical period phase, we found the same complex relationship between the envi-

ronment’s temporal unpredictability and richness, in which greater reward availability allows
unpredictability to exert its influence. Across all environments, control agents maintained
a bias toward learning from reward over its omission as indicated by positive asymmetry
indices (Fig. 10D; 25% - t (99) = 21.88, p < .001, Cohen’s d = 3.09; 55% - t (99) = 15.79,
p < .001, Cohen’s d = 2.23; 75% - t (99) = 8.49, p < .001, Cohen’s d = 1.20; 95% -
t (99) = 8.62, p < .001, Cohen’s d = 1.22). The valence of ELU agents’ biases, in contrast,
was dependent on the richness of the critical period environment. ELU agents who experi-
enced the sparsest rewards during the critical period exhibited a positivity bias, similar to con-
trol agents although weaker (Fig. 10D; 25% - t (99) = 9.098, p < .001 Cohen’s d = 1.28).
Those who experienced a less sparse environment showed no bias (55% - t (99) = −0.46,
p = 0.64, Cohen’s d = −0.065), and those who experienced an environment abundant with
rewards exhibited a negativity bias (75% - t (99) = −6.60, p < .001, Cohen’s d = −0.79;
95% - t (99) = −17.72, p < .001, Cohen’s d = −2.51). This pattern of results is a byproduct
of the reward expectations built up during the critical period. ELU agents whose representa-
tions are adapted for richer environments have a stronger prior expectation that reward will
have a delayed arrival rather than being omitted altogether. Thus, when reward is omitted on a
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trial, they experience a particularly large negative prediction error. Our simulations contradict
the predictions that would be made under the cumulative risk approach which assumes an
additive effect of adversities.

4. Discussion

Here, we propose a novel computational link between ELU and the emergence of
anhedonia—the optimization of temporal representations (TRs) to the early life environment.
By simply assuming that TRs are adapted to the statistics of the early life environment, sev-
eral behaviors associated with anhedonia emerge—impaired learning from reinforcement,
reduced anticipation of reward, and a greater response to the omission of events.

These findings are consistent with behavioral outcomes observed in the laboratory and clin-
ical settings. One representative set of such findings is of an asymmetric attentional bias in
anhedonia. If we treat the omission of reward as a negatively valenced event and the pres-
ence of reward as a positive event, this suggests a negative attentional bias in the ELU group
and positive bias in the controls, reproducing empirical findings (Dillon & Pizzagalli, 2018;
Frank, 2004). Larger negative prediction errors may not only affect attention in the moment
but also have longer lasting consequences via memory. Surprising events, like prediction
errors, are known to be more easily retrieved from memory (Rouhani et al., 2020; Sinclair
& Barense, 2018). This provides a mechanism by which singular negative events can have an
outsized influence on expectations and consequently, shape mood over the longer term (Eldar,
Rutledge, Dolan, & Niv, 2016). Frequent large negative prediction errors could produce the
persistent negative mood that characterizes anhedonia (Dillon et al., 2009). We found that
the development of this negativity bias was critically dependent on the overall richness of the
environment. To experience a pronounced negative prediction error when reward was omitted,
agents needed to have a strong expectation that reward would come but a weak expectation
of when that would be. Only in environments rich with variously timed rewards did such
expectations emerge.

Our results contradict the assumptions and predictions of the cumulative risk conceptu-
alization of early life adversity (Felitti, 2002). The cumulative risk approach has been cru-
cial in establishing the robust association between negative events early in life and a wide
array of negative outcomes later in development. However, aggregating over heterogeneous
experiences may obscure the mechanisms linking such experiences to later psychopathology
(McLaughlin, Sheridan, Humphreys, Belsky, & Ellis, 2021; Smith & Pollak, 2021). One pro-
posed alternative are dimensional models which identify influential features of the early life
environment on development and seek to characterize how these features exert their influ-
ence. Supporting the dimensional approach, recent work has found divergent associations
between measures of threat and deprivation in the early life environment with later develop-
mental outcomes, including amygdala reactivity to threat, aversive learning, cognitive con-
trol, and pubertal timing (Lambert, King, Monahan, & McLaughlin, 2017; Machlin, Miller,
Snyder, McLaughlin, & Sheridan, 2019; Miller, Machlin, McLaughlin, & Sheridan, 2021;
Rosen et al., 2020; Sheridan, Peverill, Finn, & McLaughlin, 2017; Sumner, Colich, Uddin,

 17568765, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tops.12701 by Princeton U

niversity L
ibrary, W

iley O
nline L

ibrary on [12/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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Armstrong, & McLaughlin, 2019; Sun, Fang, Wan, Su, & Tao, 2020). However, adopters of
these approaches have been criticized for an unprincipled choice of dimensions, particularly
lacking neurobiological grounding (Smith & Pollak, 2021). Given the potential relevance of
reward systems to psychopathology, it may be valuable to look at the statistical properties of
the environment known to influence associative learning as potential candidate dimensions.

Thus far, in our interpretation of the results, we ha’ve treated the cue-paired outcome as
reward. However, the model is agnostic to the valence of the outcome—allowing for different
interpretations where the outcome is treated as neutral or aversive. Different valences will
suggest different behavioral phenotypes. Treating the outcome as aversive, like a shock, the
ELU group’s prolonged expectation of a negative outcome’s appearance could be interpreted
as sustained hypervigilance (perhaps akin to a form of “paranoia”), a symptom of anxiety.
Treating the outcome as neutral, impairments in associative learning become more general
impairments in relational learning. This may explain memory deficits and alterations in hip-
pocampal structure in ELU individuals (Granger et al., 2021; Molet et al., 2016) and anhe-
donia’s associated memory deficits. Prior work has suggested that anhedonia is characterized
not only by the inability to experience pleasure in the moment but also the inability to recall
past and anticipate future pleasurable experiences (Dillon & Pizzagalli, 2018).

Here, we have only considered the mechanism under Pavlovian learning conditions.
However, it also suggests differences in ELU individuals’ instrumental learning and action
selection. The inability to accurately predict the timing of future outcomes diminishes an
individual’s perceived controllability of the environment, which has also been implicated in
psychiatric disorders, such as anxiety (Bishop & Gagne, 2018).

Hidden-state inference models capture a similar idea as the microstimulus model at a dif-
ferent level of analysis (Starkweather, Babayan, Uchida, & Gershman, 2017). Often, the true
state of the world is unknown or hidden and must be inferred from observations. This infer-
ence process is in part driven by prediction errors (Rouhani et al., 2020), and by extension is
more difficult in volatile environments. As a result, ELU individuals may infer fewer states
in the world (or, analogously, more states in an environment where negative prediction errors
predominate) and group their experiences accordingly as a result of this early volatility. We
have previously shown that this assumption of reduced sensitivity with a hidden-state infer-
ence model can produce reduced exploration in a foraging task (Harhen & Bornstein, 2023),
a behavior found in ELU populations (Lloyd, McKay, & Furl, 2022), and may also explain
why individuals who experience ELU are at higher risk of developing substance use disorders
and relapsing following treatment (Harhen, Baram, Yassa, and Bornstein, 2021).

Our model is predicated on the assumption that prediction error learning can serve as a
mechanism of environmental adaptation across multiple timescales—within a task and across
development. Embodying an extreme form of sensitive period, adulthood is conceptualized
as a period in which learning has altogether ceased. Future work could examine the effect of
more realistic, relaxed constraints on learning in adulthood—in which developmental experi-
ence lays the groundwork for the architecture of neural systems which later adulthood experi-
ence can modify and reorganize (Galván, 2010; Karmiloff-Smith, 1994). Under this scenario,
the prior biases instilled by the developmental environment should have their greatest influ-
ence in few shot or one shot learning experiences. When current experience underdetermines
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what an agent should expect or do, past experience should largely influence the conclusion
an agent reaches, with early life experience having a particularly privileged role (Griffiths,
Chater, Kemp, Perfors, & Tenenbaum, 2010). Such inductive biases facilitate learning in
environments aligned with these biases and frustrate it in misaligned environments. If the
influence of the developmental environment on expectations and choice is greatest in envi-
ronments in which the agent has limited experience, this has implications for when symptoms
for disorders like anxiety and substance use disorder should worsen (Bornstein & Pickard,
2020; Sharp, Miller, Dolan, & Eldar, 2020).

Our results highlight the key role time plays in shaping reinforcement learning and conse-
quently its impact on behaviors associated with mental illness. The model’s ability to produce
varied phenotypes from the same computations suggests that the model’s implications extend
beyond anhedonia. Potentially, it provides a common origin for a number of psychiatric disor-
ders, offering a potential explanation for high comorbidity rates (Jacobi et al., 2004; Kessler,
Chiu, Demler, Merikangas, & Walters, 2005; Krueger, Chentsova-Dutton, Markon, Goldberg,
& Ormel, 2003). Further research is needed to empirically test the model’s behavioral predic-
tions, namely, for ELU’s impact on interval timing, and interval timing’s relationship with
psychiatric disorders. Finally, our results offer a demonstration of the value of computational
modeling to understand the development of psychopathology. By drawing on a reinforce-
ment learning framework, we can formalize the changing relationship between the agent and
their environment across development, produce testable predictions of how the environment
shapes the latent computations underlying clinically relevant behaviors, like learning, and
propose mechanistic links between altered computations and the later emergence of psychi-
atric symptoms.
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